Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 951–960 of 1,028 results (Duration : 0.014 seconds)
Journal articles
Open Access
Spectroscopic imaging ellipsometry of wood fiber cell walls: a comparison with confocal microscopy, TAPPI JOURNAL, August 2007

Spectroscopic imaging ellipsometry of wood fiber cell walls: a comparison with confocal microscopy, TAPPI JOURNAL, August 2007

Journal articles
Open Access
Laboratory study of shoe pressing for low basis weight paper applications, TAPPI JOURNAL, April 2001, Vol. 84(4)

Laboratory study of shoe pressing for low basis weight paper applications, TAPPI JOURNAL, April 2001, Vol. 84(4)

Journal articles
Open Access
Application of polyallylamine as a dry strength agent for paper, TAPPI JOURNAL, December 2000, Vol. 83(12)

Application of polyallylamine as a dry strength agent for paper, TAPPI JOURNAL, December 2000, Vol. 83(12)

Journal articles
Magazine articles
Open Access
Commercially relevant water vapor barrier properties of high amylose starch acetates: Fact or fiction?, TAPPI Journal September 2021

ABSTRACT: Starches have recently regained attention as ecofriendly barrier materials due to the increased demand for sustainable packaging. They are easily processable by conventional plastics processing equipment and have been utilized for oil and grease barrier applications. While starches have excellent oxygen barrier properties and decent water barrier properties at low relative humidity (RH), they are moisture sensitive, as demonstrated by the deterioration of the barrier properties at higher RH values. Starch esters are chemically modified starches where the hydroxyl group of the starch has been substituted by other moieties such as acetates. This imparts hydrophobicity to starches and has been claimed as a good way of retaining water vapor barrier properties of starches, even at high RH conditions. We studied the water vapor barrier properties of one class of starch esters, i.e., high amylose starch acetates that were assumed to have good water vapor barrier properties. Our investigations found that with a high degree of substitution of hydroxyl groups, the modified starches did indeed show improvements in water vapor response as compared to pure high amylose starch films; however, the barrier properties were orders of magnitude lower than commercially used water vapor barriers like polyethylene. Even though these materials had improved water vapor barrier response, high amylose starch acetates are likely unsuitable as water vapor barriers by themselves, as implied by previous literature studies and patents.

Journal articles
Magazine articles
Open Access
Boiler retrofit improves efficiency and increases biomass firing rates, TAPPI Journal March 2021

ABSTRACT: Domtar’s fluff pulp mill in Plymouth, NC, USA, operates two biomass/hog fuel fired boilers (HFBs). For energy consolidation and reliability improvement, Domtar wanted to decommission the No. 1 HFB and refurbish/retrofit the No. 2 HFB. The No. 2 HFB was designed to burn pulverized coal and/or biomass on a traveling grate. The steaming capacity was 500,000 lb/h from coal and 400,000 lb/h from biomass. However, it had never sustained this design biomass steaming rate. As the sole power boiler, the No. 2 HFB would need to sustain 400,000 lb/h of biomass steam during peak loads. An extensive evaluation by a combustion and boiler technologies supplier was undertaken. The evaluation involved field testing, analysis, and computational fluid dynamics (CFD) modeling, and it identified several bottle-necks and deficiencies to achieving the No. 2 HFB’s biomass steam goal. These bottlenecks included an inadequate combustion system; insufficient heat capture; excessive combustion air temperature; inadequate sweetwater con-denser (SWC) capacity; and limited induced draft fan capacity.To address the identified deficiencies, various upgrades were engineered and implemented. These upgrades included modern pneumatic fuel distributors; a modern sidewall, interlaced overfire air (OFA) system; a new, larger economizer; modified feedwater piping to increase SWC capacity; replacement of the scrubber with a dry electrostatic precipitator; and upgraded boiler controls.With the deployment of these upgrades, the No. 2 HFB achieved the targeted biomass steaming rate of 400,000 lb/h, along with lowered stack gas and combustion air temperatures. All mandated emissions limit tests at 500,000 lb/h of steam with 400,000 lb/h of biomass steam were passed, and Domtar reports a 10% reduction in fuel firing rates, which represents significant fuel savings. In addition, the mill was able to decommission the No. 1 HFB, which has substantially lowered operating and maintenance costs.

Journal articles
Open Access
Qualification of welding procedures for duplex stainless steels, TAPPI JOURNAL, September 2000, Vol. 83(9)

Qualification of welding procedures for duplex stainless steels, TAPPI JOURNAL, September 2000, Vol. 83(9)

Journal articles
1st Person: Amanda Mynatt, SOLUTIONS! [02MAYSO24.pdf]

Amanda Mynatt, Solutions!, May 2002, Vol. 85(5) (184KB)

Journal articles
Magazine articles
Open Access
Quantification of hardwood black liquor contamination in pine black liquor, TAPPI Journal February 2024

ABSTRACT: The presence of hardwood black liquor contamination in pine black liquor can negatively impact brownstock washer and evaporator operation, as well as reduce soap separation and yield. It is also believed to negatively impact commercial kraft lignin production. It was desired to develop a method of quantitatively determining the amount of low-level hardwood liquor contamination in pine black liquor. A method employing pyrolysis-gas chromatography mass spectrometry (py-GCMS) was developed to perform the desired measurement. Laboratory cooks with carefully controlled blends of pine and hardwood chips were prepared, and the resulting liquor was measured using this technique. Additionally, samples of pine and hardwood black liquors were blended in known quantities and analyzed. All these samples were submitted as blind samples. The resulting analysis suggests the py-GCMS method was able to accurately determine the level of hardwood contamination between 1% to 10% hardwood liquor using a low-level calibration curve prepared with coniferyl alcohol and sinapyl alcohol as standards.

Journal articles
Magazine articles
Open Access
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020

ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.

Journal articles
Magazine articles
Open Access
Viscoelastic web curl due to storage in wound rolls, TAPPI Journal July 2020

ABSTRACT: Winding is often the final operation in a roll-to-roll manufacturing process. Web materials, i.e., materials that are thin compared to their length, are wound into rolls because this form is the only practical means to store them. The resulting bending strains and associated stresses are large for thick webs and laminates. As many webs are viscoelastic on some time scale, bending stresses lead to creep and inhomogeneous changes in length. When the web material is unwound and cut into discrete samples, a residual curvature remains. This curvature, called curl, is the inability for the web to lie flat at no tension. Curl is an undesirable web defect that causes loss of productivity in a subsequent web process. This paper describes the development and implementation of modeling and experimental tools to explore and mitigate curl in homogenous webs. Two theoretical and numerical methods that allow the prediction of curl in a web are developed: a winding software based on bending recovery theory, and the implementation of dynamic simula-tions of winding. One experimental method is developed that directly measures the curl online by taking advantage of the anticlastic bending resulting from the curl. These methods are demonstrated for a low-density polyethylene web.