Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 71–80 of 174 results (Duration : 0.031 seconds)
Journal articles
Magazine articles
Open Access
Editorial: TAPPI Journal 2019 Best Research Paper addresses hard scale formation in green liquor pipelines, TAPPI Journal March 2020

ABSTRACT: TAPPI and the TAPPI Journal (TJ) Editorial Board would like congratulate the authors of the 2019 TAPPI Journal Best Research Paper Award: Alisha Giglio, Vladimiros Papangelakis, and Honghi Tran. Their paper, “The solubility of calcium carbonate in green liquor handling systems,” appeared on p. 595 of the October 2019 issue. This kraft recovery cycle research was recognized by the TJ Editorial Board for its innovation, creativity, scientific merit, and clear expression of ideas.

Journal articles
Magazine articles
Open Access
Alternative “green” lime kiln fuels: Part I—Pulping/recovery byproducts, TAPPI Journal May 2020

ABSTRACT: This paper is the first of a two-part series on “green” lime kiln fuels. The first part of this work reviews the use of pulp mill and recovery byproducts as either full or partial replacement of oil or natural gas in the kiln. The second part reviews the use of various forms of woody biomass, bio-oils, gasification, and hydrogen as potential carbon neutral or carbon-free lime kiln fuels.

Journal articles
Magazine articles
Open Access
Kraft recovery boiler operation with splash plate and/or beer can nozzles — a case study, TAPPI Journal October 2021

ABSTRACT: In this work, we study a boiler experiencing upper furnace plugging and availability issues. To improve the situation and increase boiler availability, the liquor spray system was tuned/modified by testing different combinations of splash plate and beer can nozzles. While beer cans are typically used in smaller furnaces, in this work, we considered a furnace with a large floor area for the study. The tested cases included: 1) all splash plate nozzles (original operation), 2) all beer can nozzles, and 3) splash plate nozzles on front and back wall and beer cans nozzles on side walls. We found that operating according to Case 3 resulted in improved overall boiler operation as compared to the original condition of using splash plates only. Additionally, we carried out computational fluid dynamics (CFD) modeling of the three liquor spray cases to better understand the furnace behavior in detail for the tested cases. Model predictions show details of furnace combus-tion characteristics such as temperature, turbulence, gas flow pattern, carryover, and char bed behavior. Simulation using only the beer can nozzles resulted in a clear reduction of carryover. However, at the same time, the predicted lower furnace temperatures close to the char bed were in some locations very low, indicating unstable bed burning. Compared to the first two cases, the model predictions using a mixed setup of splash plate and beer can nozzles showed lower carryover, but without the excessive lowering of gas temperatures close to the char bed.

Journal articles
Magazine articles
Open Access
Tetraethyl orthosilicate-containing dispersion coating — water vapor and liquid water barrier properties, TAPPI Journal September 2021

ABSTRACT: An aqueous styrene-butadiene latex dispersion coating containing in-situ processed tetraethyl orthosilicate (TEOS) applied on paperboard demonstrated improved water barrier performance. Coatings containing TEOS equivalent to 0.8% silicon dioxide (SiO2; dry basis) exhibited water vapor performance of < 25 g/m2/day (23°C, 50% relative humidity [RH]) and liquid water barrier performance Cobb 1800 s of < 6 g/m2, when applied as a single-layer 18 g/m2 coating. Cobb 1800 s barrier performance was still good (< 11 g/m2) at coat weights of 7–10 g/m2. The use of filler materials such as kaolin improved the vapor barrier properties of the coating, but this was not critical to the liquid water barrier properties.

Journal articles
Magazine articles
Open Access
Using bleaching stage models for benchmarking softwood ECF bleach plants, TAPPI Journal July 2022

ABSTRACT: Steady-state bleaching delignification and brightening models were used to gauge how well elemental chlorine-free (ECF) bleach plants were using chlorine dioxide to bleach 25-kappa softwood brownstocks. Case 1 examined the D0(EOP)D1 portion of Mill 1’s five-stage sequence that brightens the pulp to 86% ISO. Case 2 studied the D0(EO)D1 portion of Mill 2’s four-stage sequence, which brightens the pulp to 82% ISO, and Case 3 re-examined the same bleach plant several years after it made improvements around the extraction stage. The models highlighted days in the previously mentioned cases where high bleach usage occurred, presumably because of high brownstock and/or extraction washer carryover, and days where bleach usage was normal. In Case 2, the model esti-mated that 10 kg of the 44 kg chlorine dioxide/metric ton pulp consumed in bleaching was likely reacting with washer carryover sources; approximately two-thirds of this extra consumption was assumed to be reacting with extraction filtrate. Changes that Mill 2 made (Case 3) reduced the unproductive chlorine dioxide usage from 10 to 5 kg/metric ton pulp. When the delignification and brightening models were simultaneously solved, the models predicted somewhat different optimized distributions of chlorine dioxide to D0 and D1 vs. actual values used in bleach plants. However, the forecasted chlorine dioxide totals agreed with the actual values when washer carryover sources were considered. This study showed the bleaching models could be used as hypothetical benchmarks for softwood ECF bleach plants.

Journal articles
Magazine articles
Open Access
Considerations in managing wastewater odor at pulp and paper operations, TAPPI Journal March 2022

ABSTRACT: Many pulp and paper mills are, at least periodically, faced with the release of odors that can migrate offsite and be considered a nuisance by nearby residents. At chemical pulp mills, perceptible odors associated with reduced sulfur compounds (RSCs) are common, many of which are highly perceptible owing to their low odor thresholds. As releases of RSCs and other odorous substances from production processes are progressively controlled, the proportional contribution from wastewater treatment systems to areal odors can increase. This review paper summarizes important fundamentals of odor generation, source identification, and control. Common odorous substances are identified, and mechanisms for their generation are summarized. Approaches for measuring odorous substances are detailed to enable more effective management, and various odor control strategies are discussed.

Journal articles
Magazine articles
Open Access
Effects of agitator blade scaling on mixing in dissolving tanks, TAPPI Journal April 2022

ABSTRACT: Hard calcium carbonate scale often forms on the agitators in smelt dissolving tanks. The effects of this scale on mixing are not well understood. While mixing in tanks has often been modeled in the literature, there have been no studies involving agitator scaling. To better understand the impact of agitator scaling on hydrodynamics and tank concentrations, a steady state, three-dimensional (3D) model has been developed for a smelt dissolving tank at a kraft pulp mill. In this work, four cases are compared: an agitator with no scaling, mild scaling, moderate scaling, and extreme scaling. The extreme scaling case is representative of scale buildup on a dissolving tank agitator that was significant enough that the agitator had to be stopped and cleaned. The reduction in the agitator fluid jet velocity is relatively small for the mild and moderate scaling cases, but it becomes more significant for the extreme scaling case, for which the results indicate that the mixing of the smelt with the weak wash is likely poor and that there would thus be a risk of smelt pooling.

Journal articles
Magazine articles
Open Access
Factors affecting phosphorus uptake/dissolution during slaking and causticizing, TAPPI Journal March 2024

ABSTRACT: Hydroxide is regenerated in the recovery cycle of kraft pulp mills by the addition of lime (CaO) to green liquor. Phosphate in green liquor can react with the lime during slaking/causticizing. Total titratable alkali (TTA), sulfidity, the concentration of phosphate in the green liquor, temperature, and the liming ratio were all variables explored in this work to determine their influence on phosphorus uptake and dissolution. Experiments were also run in which the lime was slaked before being added to the green liquor to separate reactions with phosphate during slaking and reactions that occur during causticizing. Both reburnt lime and technical grade CaO were used. The experiment results indicate that phosphorus primarily reacts with slaked lime (Ca(OH)2), and that the final concentration of phosphate in the white liquor at the end of slaking and causticizing is nearly independent of the initial concentration of phosphorus and only mildly dependent on the carbonate concentration in the green liquor. There do appear to be differences in the rate at which phosphate reacts with reburnt lime and technical grade CaO, though the reason for this was not determined.

Journal articles
Magazine articles
Characterizing rheological behavior and fluidization of highly refined furnishes, TAPPI Journal April 2024

ABSTRACT: In this work, highly refined softwood bleached kraft pulp (SWBKP) furnishes, referred to here as XFC, were studied from the perspective of fiber suspension handling in processing. The rheology of the furnishes was studied with a rotational rheometer using a non-standard flow geometry to understand the viscosity development at different consistencies and the impact of temperature. For fluidization analysis during pipe flow, two optical methods were implemented; namely, optical coherence tomography (OCT) and high-speed video (HSV) imaging. The OCT was used to determine the small-scale floc structures near the pipe wall where the shear stress is highest, and the HSV imaging was applied for observing flow instabilities and XFC suspension uniformity at the pipe scale. All these issues can be significant in deciding the minimum flow rate required for a process pipe to get sufficient fluidization of XFC suspensions.

Journal articles
Magazine articles
Open Access
Prehydrolysis kraft pulping of jute cutting and caddis mixture for rayon production

ABSTRACT: Jute cutting, jute caddis, and cutting-caddis mixtures were prehydrolyzed by varying time and temperature to get about 90% prehydrolyzed yield. At the conditions of 170°C for 60 min of prehydrolysis, the yield for 100% jute cutting was 76.3%, while the same for jute caddis was only 67.9%. But with prehydrolysis at 150°C for 60 min, the yield was 90% for jute cutting, where 49.94% of original pentosan was dissolved and prehydrolysis of jute caddis at 140°C in 60 min yielded 86.4% solid residue. Jute cutting-caddis mixed prehydrolysis was done at 140°C for 30 min and yielded 92% solid residue for 50:50 cutting-caddis mixtures, where pentosan dissolution was only 29%. Prehydrolyzed jute cutting, jute caddis, and cutting-caddis mixtures were subsequently kraft cooked. Pulp yield was only 40.9% for 100% jute cutting prehydrolyzed at 170°C for 60 min, which was 10.9% lower than the prehydrolysis at 140°C. For jute cutting-caddis mixed prehydrolysis at 140°C for 45 min followed by kraft cooking, pulp yield decreased by 3.3% from the 100% cutting to 50% caddis in the mixture, but 75% caddis in the mixture decreased pulp yield by 6.7%. The kappa number 50:50 cutting-caddis mixture was only 11.3. Pulp bleachability improved with increasing jute cutting proportion in the cutting-caddis mixture pulp.