Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Quantification of vegetable oil in recycled paper, TAPPI JOURNAL September 2020
ABSTRACT: Vegetable soybean oil is commonly used in cooking foods that are packaged in takeaway paper-board containers. Vegetable oil is hydrophobic, and in sufficiently high concentration, could interfere with interfiber bonding and result in paper strength loss. In order to quantify the effect of oil on the resulting paperboard strength, it is necessary to quantify the oil content in paper. A lab method was evaluated to determine the soybean oil content in paper. Handsheets were made with pulps previously treated with different proportions of vegetable oil. Pyrolysis gas chromatography-mass spectrometry (pyGCMS) was used to quantify the amount of oil left in the handsheets. The results revealed a strong correlation between the amount of oil applied to the initial pulp and the amount of oil left in the handsheets.In addition, the effect of vegetable oils on paper strength may be affected by the cooking process. Vegetable oil is known to degrade over time in the presence of oxygen, light, and temperature. The vegetable oil was put in an oven to imitate the oil lifecycle during a typical pizza cooking process. The cooked oil was then left at room temperature and not protected from air (oxygen) or from normal daylight. The heated, then cooled, oil was stored over a period of 13 weeks. During this time, samples of the aged oil were tested as part of a time-based degradation study of the cooked and cooled oil.
Journal articles
Magazine articles
Alternative “green” lime kiln fuels: Part II—Woody biomass, bio-oils, gasification, and hydrogen, TAPPI Journal May 2020
ABSTRACT: This paper is the second of a two-part series on “green” lime kiln fuels. The first part of this work reviews the use of pulp mill and recovery byproducts as either full or partial replacement of oil or natural gas in the kiln. The second part reviews the use of various forms of woody biomass, bio-oils, gasification and hydrogen as potential carbon neutral or carbon-free lime kiln fuels. Several of these options require specialized burners to supply the fuel to the kiln and high-quality metallurgy to withstand the acidic conditions of the fuel.
Journal articles
Magazine articles
Evaluation of novel drum chipper technology: pilot-scale production of short wood chips, TAPPI Journal October 2019
ABSTRACT: Impregnation of wood chips with acidic pulping liquors is improved when using short chip lengths. If the average wood chip length is too short, conventional chipping technology will generate excess small material, such as pin chips and fines. The possibility of using newly developed drum chipping technology to produce short-length wood chips was evaluated with a pilot drum chipper operating at different drum velocities and in-feed angles. With a drum velocity of 30 m/s, the average wood chip lengths and the combined fractions of pin chips and fines were 24 mm and 3.3%, 22 mm and 4.2%, and 17 mm and 8.5%. The highest fractions of total accept chips (large and small accepts), 89% to 90% without screening, were observed for drum velocities of 30•34 m/s and average wood chips lengths of 21•22 mm. The results indicate the potential of drum chipping technology for producing short wood chips with relatively high fractions of accept chips and tolerable fractions of pin chips and fines.
Journal articles
Magazine articles
Kraft pulp bleaching with a P-stage catalyzed by both bicarbonate and TAED, TAPPI Journal July 2019
ABSTRACT: Peroxide bleaching of softwood and hardwood (eucalypt) kraft pulps was performed in solutions of sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3), and sodium hydroxide (NaOH). The conventional P stage (hydrogen peroxide + sodium hydroxide; H2O2 + NaOH) was the most effective brightening system without an additional activator. However, peroxide activation by bicarbonate anion (HCO3•) was obvious in all cases where NaHCO3 or Na2CO3 was used. When N,N,N’,N’-tetraacetylethylenediamine (TAED) was added to the bleaching sys-tem, Na2CO3 as the alkali source afforded equal or slightly higher bleached brightness compared to NaOH usage for both the softwood and hardwood pulps. This outcome is attributed to simultaneous peroxide activation by HCO3• and TAED. When applied to the eucalypt pulp, the H2O2/Na2CO3/TAED bleaching system also decreased the bright-ness loss due to thermal reversion.
Journal articles
Magazine articles
Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018
Influence of tensile straining and fibril angle on the stiffness and strength of previously dried kraft pulp fibers, TAPPI JOURNAL July 2018
Journal articles
Magazine articles
Enzymatic treated viscose fibers functionalized by chitosan, TAPPI JOURNAL August 2018
Enzymatic treated viscose fibers functionalized by chitosan, TAPPI JOURNAL August 2018
Journal articles
Magazine articles
Using bleaching stage models for benchmarking hardwood ECF bleach plants, TAPPI Journal October 2023
ABSTRACT: Steady-state models estimated the performance of the D0(EOP)D1 bleach sequence at two mixed hardwood bleach plants in the southern United States. At Mill 1, the full sequence’s chlorine dioxide charge that brightens the pulp to ~84% ISO was monitored for two weeks. Mill 2 considered the partial sequence that brightens the pulp to ~86% ISO for nearly four weeks. Elevated levels of chlorine dioxide were linked to increased washer carryover in brownstock and extraction areas. For Mills 1 and 2, an extra 0.24% and 0.33% chlorine dioxide was consumed in the D0 stage. This extra bleach demand was equivalent to an additional 4.8 and 5.5 kappa load to the brownstock, respectively. Some differences were observed for the D1 stage. Mill 1 had extraction carryover that averaged 1.1 units higher than was measured, contributing to use of an extra 0.22% of chlorine dioxide. Mill 2 had extraction carryover that averaged between 0 and 0.7 kappa units and consumed up to 0.13% more chlorine dioxide. Another data set from Mill 2 showed high brownstock and extraction carryover, leading to ~0.90% more total chlorine dioxide usage to brighten to 84% ISO. Overall, this investigation illustrated that the models could be employed as benchmarks.
Journal articles
Magazine articles
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) — Fibrous substrates, TAPPI Journal September 2023
ABSTRACT: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been implemented during the finishing process of textiles such as upholstery, clothing, personal protective equipment, and sports gear to provide water resistance. Currently, PFAS are still present at quantifiable levels in consumer products and food, even though many companies have started to phase out PFAS treatment with non-toxic water repellant replacements given the possible detrimental health effects suggested by current research. This paper is a detailed review that focuses on how PFAS are implemented in textile production and sources of PFAS contamination during chemical treatments. This review also addresses current legislation on PFAS emissions and trade regulations to decrease exposure of consumers due to toxicokinetics and mechanisms of action through-out the body that are still not well understood. This paper includes a literature review on possible PFAS related health conditions shown from past research and contains suggested toxicity levels, exposure routes, duration, and pathways detailed to the best of our ability.
Journal articles
Magazine articles
A new method of studying the fundamental mechanisms involved in pigment liberation from recycle papers, TAPPI Journal October 2022
ABSTRACT: Deinking flotation is the most efficient and widely used method of removing ink particles from printed papers to improve the recyclability. A prerequisite for successful deinking flotation is detachment of pigments from paper fibers, a subprocess known as liberation. The degree of liberation is usually determined via hyperwashing tests, which are costly and time consuming. Furthermore, they provide no information on the fundamental mechanisms controlling liberation. In the present work, we developed a new method in which ?-potentials of the particles in a pulp are measured and analyzed. If pigments are not liberated from paper fibers, a frequency distribution plot gives a single peak, while two peaks appear when they are liberated. One can readily determine the degrees of liberation from the peak positions and peak heights. In addition, the ?-potential data can be used to construct disjoining pressure isotherms using the DLVO theory that are useful to better understand the fundamental mechanisms involved and the roles of different reagents used to improve pigment liberation.
Journal articles
Magazine articles
Improving refining efficiency with deflocculation, TAPPI Journal May 2022
ABSTRACT: The ability to load a refiner requires the formation of a fiber mat between opposing refiner bars. One of the consequences of this is the formation of flocs that persist through the refiner grooves and exit the refiner. These flocs interfere with sheet strength, requiring additional energy to make up the strength deficit. In addition, flocs can initiate string formation, resulting in machine efficiency issues such as cross-machine profile deterioration and the downtime required to correct it. Novel refiner plate modifications have been shown to improve refining efficiency in otherwise identical refiner plates. Energy savings are typically around 15% of gross refining energy on the basis of the treated stock, although much higher reductions have also been seen. Addressing this previously underappreciated flaw in conventional refining enables greenhouse gas reduction and other benefits related to sheet strength and machine efficiency.