Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Editorial: Concentrated content: TAPPI Journal special issues create research visibility, TAPPI Journal September 2024
You may have noticed that TAPPI Journal often brings readers special focused issues from time to time. Over the years, these issues have covered a range of topics, including wet-end technology, recovery cycle, foam forming, coating, additives, biorefinery, nanotechnology, lignin, pulping, recycling, university research, and more.
Journal articles
Magazine articles
Multifunctional barrier coating systems created by multilayer curtain coating, TAPPI Journal November 2023
ABSTRACT: Functional coatings are applied to paper and paperboard substrates to provide resistance, or a barrier, against media such as oil and grease, water, water vapor, and oxygen, for applications such as food packaging, food service, and other non-food packaging. Today, there is increasing interest in developing recyclable and more sustainable approaches for producing these types of packages. This paper focuses on water-based barrier coatings (WBBC) for oil and grease resistance (OGR), water, moisture vapor transmission rate (MVTR), and oxygen barrier performance. The main goal is to create coated systems that can achieve more than one barrier property using multilayer curtain coating (MLCC) in a single application step. One advantage is in optimizing coating material cost with the use of functional chemistry in confined layers where performance is balanced within the coating layered structure. This allows simultaneous application of layers of different polymer types in one step to achieve the appropriate performance needs for a given barrier application. This paper provides working examples of using MLCC to create coating structures with multiple barrier properties in a single application pass. Barrier polymers studied include styrene butadiene, styrene acrylate, starch-containing emulsions, and polyvinyl alcohol. The paper also shows the effect of increasing the pigment volume concentration with platy clay or fine ground calcium carbonate on MVTR and OGR barrier properties.
Journal articles
Magazine articles
Surface energy considerations for offset printing of coated paper and paperboard, TAPPI Journal November 2023
ABSTRACT: Offset printing of coated paper involves the complex interactions of ink with a surface that is characterized by three major properties: roughness, porosity, and related pore network structure and surface chemistry (related to surface free energy [SFE]). The effects of porosity and roughness are relatively well understood and are documented in the literature, whereas the influence of surface chemistry is much less studied and therefore the focus of this paper. The key results shown include: i) Coating porosity has a negligible effect on SFE determination by contact angle using two fluids. ii) The chemistry of the latex polymer in the coating formulation dominates the influence on SFE compared to pigment, with any surface energy differences present in the pigment being almost completely masked by latex. iii) Wetting agent and corona treatment can impact water absorption rate and surface spreading of water, resulting in small differences in printability. Increasing the concentration of the surfactant on a coated surface indicates switching orientation of the surfactant molecules, giving a “step wise” printing result. When looking to improve offset printability by selection of different pigments, the variation in SFE is less important than variation in either surface roughness or porosity.
Journal articles
Magazine articles
The use of hollow sphere pigments as strength additives in paper and paperboard coatings—Part 2: Optimization in paperboard formulations for opacity and strength, TAPPI Journal November 2020
ABSTRACT: This report aims to summarize the efforts in testing the properties of coatings for paperboard utilizing hollow sphere pigments (HSPs). HSPs are known to effectively scatter light and replace titanium dioxide (TiO2) in architectural coating formulations. The effect of the particle size and void fraction was evaluated, along with many coating parameters, including level of addition, binder chemistry, and blends of two HSPs. The small HSPs that have optimized voids for scattering light showed equivalent strength to the TiO2-containing control. The strength data was surprising, particularly the improvement in strength for coatings containing large particle size HSPs. Because of this increase in strength, four parts of binder could be removed, which allowed for higher brightness while not compromising other properties, including hot melt glueability. These trends held true using different binder chemistries (styrene acrylic, vinyl acrylic, and styrene butadiene). Upon refining the formulations further, blends of two HSPs showed further benefit.
Journal articles
Magazine articles
Cationic emulsions of maleic anhydride derivatives of oleic and abietic acid for hydrophobic sizing of paper, TAPPI Journal 2020
ABSTRACT: Ordinary rosin sizing agents are mixtures of resin acids that include abietic acid and related compounds obtained from softwoods such as pine. Fatty acids, which are another byproduct of the kraft pulping of soft-wood species, also may have hydrophobic effects, but their use as sizing agents has seldom been considered. In the current study, abietic acid and oleic acid, in the absence of other components, were first modified by reaction with maleic acid anhydride. Then, the maleated derivatives (maleated oleic acid [MOA] and maleated abietic acid [MAA]), which were emulsified with cationic starch at the 1:1 and 3:2 ratio, respectively, were added to fiber furnish containing aluminum sulfate (papermaker’s alum). The prepared sheets were dried with a rotating drum on one side at 100°C at low pressure to cure the sizing agents. The chemical, optical strength, and absorption properties were measured. The presence of the sizing material was confirmed using time of flight secondary ion mass spectrometry (ToF-SIMS), and the retention of the sizing agent on fibers was supported by evidence of hydrocarbons on the paper surface. In addition to achieving sufficient water resistance features with MAA, a lesser hydrophobic character was obtained when using MOA. Compared to commercial applications, relatively large amounts of sizing agent were used to obtain a sufficient sizing degree. The MOA required 5% addition to achieve a similar sizing degree as MAA at the 2% level. The sizing treatments also resulted in substantial increases in tensile index value. Since cationic starch was used in the formulation of the sizing agents, the increase in tensile index may have been due to the influence of cationic starch. Contributions to paper strength from a combination of ionic complexation and mutual association of hydrophobic groups is also proposed. Depending on the amount of sizing agent, the yellowness increased, especially when sizing with MOA.
Journal articles
Magazine articles
Wet pressing and product quality: Review of previous pilot machine trials, TAPPI Journal July 2020
ABSTRACT: The purpose of wet pressing is to remove water by mechanical means to consolidate the web and minimize the energy expended in the dryer section. In this process, paper is compacted and densified to degrees that impact end-use performance. Average density is increased by pressing, which has implications for grades where stiffness is important. The z-direction density gradients can affect printing and converting. Lastly, pressing affects surface quality of paper and its response to printing. Broadly speaking, the final press nip dominates the paper surface roughness and the early press nips affect printing performance.
Journal articles
Magazine articles
A case study review of wood ash land application programs in North America, TAPPI Journal February 2021
ABSTRACT: Several regulatory agencies and universities have published guidelines addressing the use of wood ash as liming material for agricultural land and as a soil amendment and fertilizer. This paper summarizes the experiences collected from several forest products facility-sponsored agricultural application programs across North America. These case studies are characterized in terms of the quality of the wood ash involved in the agricultural application, approval requirements, recommended management practices, agricultural benefits of wood ash, and challenges confronted by ash generators and farmers during storage, handling, and land application of wood ash.Reported benefits associated with land-applying wood ash include increasing the pH of acidic soils, improving soil quality, and increasing crop yields. Farmers apply wood ash on their land because in addition to its liming value, it has been shown to effectively fertilize the soil while maintaining soil pH at a level that is optimal for plant growth. Given the content of calcium, potassium, and magnesium that wood ash supplies to the soil, wood ash also improves soil tilth. Wood ash has also proven to be a cost-effective alternative to agricultural lime, especially in rural areas where access to commercial agricultural lime is limited. Some of the challenges identified in the review of case studies include lengthy application approvals in some jurisdictions; weather-related issues associated with delivery, storage, and application of wood ash; maintaining consistent ash quality; inaccurate assessment of required ash testing; potential increased equipment maintenance; and misconceptions on the part of some farmers and government agencies regarding the effect and efficacy of wood ash on soil quality and crop productivity.
Journal articles
Magazine articles
Co-ground mineral/microfibrillated cellulose composite materials: Recycled fibers, engineered minerals, and new product forms, TAPPI Journal January 2021
ABSTRACT: When pulp and minerals are co-processed in suspension, the mineral acts as a grinding aid, allowing costeffective production of mineral/microfibrillated cellulose (MFC) composite materials. This processing uses robust milling equipment and is practiced at industrial scale. The resulting products can be used in many applications, including as wet- and dry-strength aids in paper and board production.Previously, we have reported that use of these MFC composite materials in fiber-based applications allow generally improved wet and dry mechanical properties with concomitant opportunities for cost savings, property improvements, or grade developments. Mineral/MFC composites made with recycled pulp feedstocks were shown to offer at least equivalent strength aid performance to composites made using virgin fibers. Selection of mineral and fiber allows preparation of mineral/MFC composites with a range of properties. For example, the viscosity of such formulations was shown to be controlled by the shape factor of the mineral chosen, effective barrier formulations were prepared, and mineral/MFC composites with graphite as the mineral were prepared.High-solids mineral/MFC composites were prepared at 75% total solids (37% fibril solids). When resuspended and used for papermaking, these high-solids products gave equivalent performance to never-dried controls.
Journal articles
Magazine articles
Flow characteristics of drag-reducing natural bamboo fiber suspensions with minimal environmental load, TAPPI Journal September 2019
ABSTRACT: The reduction of pipe friction loss by adding drag-reducing agents has attracted attention as an aid to energy conservation. Drag-reducing agents induce drag reduction (DR) effects and should have a minimal environmental load, with natural resource-saving potential. This study demonstrates bamboo fiber as a drag-reducing agent that saves natural resources and has a low environmental load. Using pressure drop measurements, we report DR with suspensions of bamboo fibers with the average diameter of 13.3 µm and aspect ratio of 98.7. The maximum DR obtained in this experiment is 43% at the concentration of 4000 ppm and pipe diameter of 30 mm; DR is affected by the Reynolds number, suspension concentration, and pipe diameter. In addition, the bamboo fibers can be easily removed from the suspensions by filtration. We found that low-environmental-load bamboo fiber has DR effects like those of other fibers; its effects are greater than those of conventional synthetic fibers and wood pulp. Furthermore, it is resistant to mechanical degradation, recoverable, and recyclable. Therefore, DR effects can be selectively obtained by adding the fibers only when DR is needed; the fibers can then be collected when DR is no longer necessary. This method might greatly expand the application range of DR agents. The results demonstrate the usefulness of bamboo fibers as DR additives.
Journal articles
Magazine articles
Citrus-based hydrocolloids: A water retention aid and rheology modifier for paper coatings, TAPPI Journal July 2019
ABSTRACT: The rheological and dewatering behavior of an aqueous pigmented coating system not only affects the machine runnability but also affects the product quality. The current study describes the use of natural hydrocol-loids derived from citrus peel fibers as a rheology modifier in paper coating applications. The results were compared with carboxymethyl cellulose (CMC) in a typical paper coating system. Water retention of the coating formulation was increased by 56% with citrus peel fibers compared to a default coating, and it also was higher than a CMC-containing coating. The Brookfield viscosity of paper coatings was found to increase with citrus peel fibers. Compared to CMC, different citrus peel fibers containing coating recipes were able to achieve similar or higher water retention values, with no change or a slight increase in viscosity. Coatings were applied on linerboard using the Mayer rod-coating method, and all basic properties of paper were measured to assess the impact of citrus peel fiber on the functional value of the coatings. Paper properties were improved with coated paper containing citrus peel fibers, including brightness, porosity, smoothness, surface bonding strength, and ink absorption.