Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 541–550 of 556 results (Duration : 0.013 seconds)
Journal articles
Magazine articles
Open Access
Editorial: Looking back and looking forward: Paper physics and the paper industry, TAPPI Journal October 2018

Editorial: Looking back and looking forward: Paper physics and the paper industry, TAPPI Journal October 2018

Journal articles
Magazine articles
Open Access
Guest Editorial: Recognizing excellence in recycling, TAPPI

Guest Editorial: Recognizing excellence in recycling, TAPPI JOURNAL February 2012

Journal articles
Magazine articles
Open Access
Boiler retrofit improves efficiency and increases biomass firing rates, TAPPI Journal March 2021

ABSTRACT: Domtar’s fluff pulp mill in Plymouth, NC, USA, operates two biomass/hog fuel fired boilers (HFBs). For energy consolidation and reliability improvement, Domtar wanted to decommission the No. 1 HFB and refurbish/retrofit the No. 2 HFB. The No. 2 HFB was designed to burn pulverized coal and/or biomass on a traveling grate. The steaming capacity was 500,000 lb/h from coal and 400,000 lb/h from biomass. However, it had never sustained this design biomass steaming rate. As the sole power boiler, the No. 2 HFB would need to sustain 400,000 lb/h of biomass steam during peak loads. An extensive evaluation by a combustion and boiler technologies supplier was undertaken. The evaluation involved field testing, analysis, and computational fluid dynamics (CFD) modeling, and it identified several bottle-necks and deficiencies to achieving the No. 2 HFB’s biomass steam goal. These bottlenecks included an inadequate combustion system; insufficient heat capture; excessive combustion air temperature; inadequate sweetwater con-denser (SWC) capacity; and limited induced draft fan capacity.To address the identified deficiencies, various upgrades were engineered and implemented. These upgrades included modern pneumatic fuel distributors; a modern sidewall, interlaced overfire air (OFA) system; a new, larger economizer; modified feedwater piping to increase SWC capacity; replacement of the scrubber with a dry electrostatic precipitator; and upgraded boiler controls.With the deployment of these upgrades, the No. 2 HFB achieved the targeted biomass steaming rate of 400,000 lb/h, along with lowered stack gas and combustion air temperatures. All mandated emissions limit tests at 500,000 lb/h of steam with 400,000 lb/h of biomass steam were passed, and Domtar reports a 10% reduction in fuel firing rates, which represents significant fuel savings. In addition, the mill was able to decommission the No. 1 HFB, which has substantially lowered operating and maintenance costs.

Journal articles
Magazine articles
Open Access
Peracetate/singlet oxygen chemistry used in post-bleaching of kraft pulp as a practical oxidant for paper machines, TAPPI Journal May 2021

ABSTRACT: The use of a novel sodium peracetate/singlet oxygen chemistry for brightening bleached kraft pulp shows exciting potential for technical performance, supply logistics, safety, and cost reduction. Potential chemical carryover to the paper machine raises questions about whether peracetate will impact paper machine performance, such as metal corrosion, useful press felt life, and interference with existing biocide programs or paper machine chemistry. Sodium peracetate/singlet oxygen chemistry can be used in high-density storage chests for brightening/whitening and to increase color stability. Any oxidant used directly before the paper machine has the possibility of impacting paper machine operations. Traditional oxidants used in bleaching, such as chlorine dioxide and hydrogen peroxide, are known to cause corrosion on machinery metals and press felts. Hydrogen peroxide residuals can interfere with common biocide programs. Traditional oxidants used in biocide treatments themselves significantly degrade press felt life when the rule-of-thumb concentration thresholds are exceeded. Sodium peracetate is evaluated in this paper for its impact on nylon press felt fiber degradation, metal corrosion, and interference with typical biocide programs.Laboratory results indicate that sodium peracetate/singlet oxygen chemistry is less corrosive than chlorine, bromine, and hydrogen peroxide on press felt nylon fiber and can therefore be used at higher levels than those chemistries to increase brightness without increasing negative downstream impact. Sodium peracetate can also be used with current biocide programs without negative impacts such as consumptive degradation. Higher residuals of peracetate going to the paper machine may be useful as a biocide itself and can complement existing programs, allowing those programs to stay within their safe operating levels and thereby extend press felt useful life.

Journal articles
Magazine articles
Open Access
Mechanical modification of softwood pulp fibers using a novel lightweight vertical bar plate, TAPPI Journal April 2021

ABSTRACT: Refiner plates made using sand casting have a draft angle, which results in a trapezoidal bar shape. These trapezoidal bar plates have a limited throughput compared to the vertical bar plates, and eventually the edges of the bars become dull, resulting in longer time to reach the target freeness and shorter service life. The new light-weight refiner plate with a bar insertion method into a plate base was developed by selecting an aluminium-based alloy as the plate base material and a stainless steel alloy with high wear resistance as the bar material. The light-weight plate with sharp bar edges was very effective in reducing refining energy by reaching the target freeness faster than the sand-cast bar plate. Finally, the lightweight sharp bar plate, which weighed only about half the weight of the cast bar plate, was expected to significantly contribute to easy replacement, improved paper quality, and larger throughput without excessive loss of fiber length.

Journal articles
Magazine articles
Open Access
An analytical method to quantitatively determine the amount of polyamide epichlorohydrin (PAE) in paperboard and white water, TAPPI Journal February 2023,

ABSTRACT: Polyamide epichlorohydrin (PAE) is a permanent wet strength resin. When applied to paperboard, some amount of resin is retained in the sheet, and some is lost to the white water. An analytical method for quantifying the amount of PAE retained in the sheet and lost into the white water has been developed. This method hydrolyzes the PAE to adipic acid, which in turn is derivatized to diethyl adipate and quantified by pyrolysis gas chromatography•mass spectrometry (pyGCMS). In addition, the hydrolysis conditions of the PAE were studied by the Taguchi approach, and PAE material balances around the dry sheet and white water for 3 and 6 lb/ton PAE applications have been performed. The PAE resin recovery was 95.4% with 65.0% in the sheet for the 3 lb/ton PAE-charged paper-board, and the recovery was 96.7% with 36.1% in the sheet for the 6 lb/ton PAE-charged paperboard.

Journal articles
Magazine articles
Open Access
Advantages of lean duplex stainless steels in the pulp and paper industry, TAPPI Journal April 2023

ABSTRACT: The performance of lean duplex stainless steels has been utilized by the pulp and paper industry since their introduction to the market almost 20 years ago. Experience has shown that this group of stainless steels has exceptional performance in, for example, alkaline environments towards typical deterioration mechanisms, i.e., uniform corrosion and stress corrosion cracking. The chemistry of the “lean” duplex steels is designed so that the content of volatile and expensive elements like nickel and molybdenum can be reduced to an absolute minimum without sacrificing the technical performance. This reduces the raw material cost and most importantly provides predictability of the steel price, which is often challenging with conventional austenitic and duplex stainless steels.Thanks to a dual phase microstructure and high nitrogen content, lean duplex steels have at least two times higher strength compared to standard austenitic stainless steels. This is often a preferred feature in pulp and paper construction, as it enables lighter structures and less material to be utilized. Today, lean duplex steels are widely available in various dimensions, from thin cold rolled sheets up to thick hot rolled plates. Lean duplex steels are also fully recyclable after the decommissioning stage of the equipment, thereby contributing to the circular economy.

Journal articles
Magazine articles
Open Access
Water chemistry challenges in pulping and papermaking • fundamentals and practical insights: Part 2: Conductivity, charge, and hardness, TAPPI Journal June 2023

ABSTRACT: Although water is essential to the papermaking process, papermakers often overlook its importance and focus on fibers, fillers, and chemical additives. A better understanding of water properties and chemical interactions associated with water at the wet end leads to a sound foundation for high-quality paper production and smooth operation. Water is an excellent solvent for ionic substances, both organic and inorganic. These substances contribute to system conductivity, charge, and hardness and significantly impact the papermaking process. Part 1 of this paper, published in TAPPI J. 21(6): 313(2022), discussed fundamental water properties, water chemistry, and the impact of pH on pulping and papermaking operations. In this paper, we review definitions, sources, and the typical symptoms of the effect of conductivity, charge, and hardness on the productivity of the papermaking process. Sources of conductivity, charge, and hardness impacting these factors, measurement methods, and available correction strategies for their control are also discussed.

Journal articles
Magazine articles
Open Access
Evaluating the effect of recovery boiler operation on green liquor dregs concentration using multivariate analysis, TAPPI Journal June 2023

ABSTRACT: Poor settling and filterability of green liquor dregs has been a persistent problem in many kraft pulp mills. While the concentration and settling/filtering behaviors of dregs are expected to be related to how black liquor is burned in recovery boilers, the effect of boiler operation is not well understood. A systematic study was conducted to examine how recovery boiler operation may affect the dregs concentration in the raw green liquor (RGL) at three kraft pulp mills using SIMCA, a multivariate data analysis (MVDA) program. Daily average boiler operating data from three kraft mills were analyzed over a 3-year period. Results of both principal component analysis (PCA) and partial least squares regression (PLS) suggest that the main boiler operations contributing to high dregs concentrations in RGL are low liquor firing load, low bed temperature, poor char burning, and unstable char bed.

Journal articles
Magazine articles
Open Access
Mechanistic aspects of nanocellulose•cationic starch•colloidal silica systems for papermaking, TAPPI Journal February 2023

ABSTRACT: Optimization of a chemical additive program for a paper machine can require attention to both colloidal charges and kinetic effects. This work considered an additive program with two negatively charged substances (nanofibrillated cellulose [NFC] and colloidal silica) and two positively charged items (cationic starch and cationic acrylamide copolymer retention aid). Results were shown to depend on charge interactions; however, that clearly was not the whole story. Some findings related to cationic demand, dewatering, fine-particle retention, and flocculation among fibers were best explained in terms of at least partly irreversible complexation interactions between the charged entities. Adjustments in ratios between oppositely charged additives, their sequences of addition, and effects of hydrodynamic shear levels all affected the results. In general, the most promising results were obtained at a cationic starch level of 0.25% to 0.5% based on sheet solids in systems where the cationic starch was used as a pretreatment for NFC.