Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Temperature profile measurement applications of moving webs and roll structures with intelligent roll embedded sensor technology, TAPPI Journal November 2021
ABSTRACT: An intelligent roll for sheet and roll cover temperature profiles is a mechatronic system consisting of a roll in a web handling machine that is also used as a transducer for sensing cross-machine direction (CD) profiles. The embedded temperature sensor strips are mounted under or inside the roll cover, covering the full width of the roll’s cross-dimensional length. The sensor system offers new opportunities for online temperature measurement through exceptional sensitivity and resolution, without adding external measurement devices. The measurement is contacting, making it free from various disturbances affecting non-contacting temperature measurements, and it can show the roll cover’s internal temperatures. This helps create applications that have been impossible with traditional technology, with opportunities for process control and condition monitoring. An application used for process analysis services without adding a roll cover is made with “iRoll Portable Temperature” by mounting the sensor on the shell in a helical arrangement with special taping. The iRoll Temperature sensors are used for various purposes, depending on the application. The two main targets are the online temperature profile measurement of the moving web and the monitoring of the roll covers’ internal temperatures. The online sheet temperature profile has its main utilization in optimizing moisture profiles and drying processes. This enables the removal of speed and runnability bottlenecks by detecting inadequate drying capacity across the sheet CD width, the monitoring condition of the drying equipment, the optimization of drying energy consumption, the prevention of unnecessary over-drying, the optimization of the float drying of coating colors, and the detection of reasons for moisture profile errors. This paper describes this novel technology and its use cases in the paper, board, and tissue industry, but the application can be extended to pulp drying and industries outside pulp and paper, such as the converting and manufacture of plastic films.
Journal articles
Magazine articles
Utilization of kraft pulp mill residuals, TAPPI Journal February 2022
ABSTRACT: Kraft pulp mills produce on average about 100 kg of solid residuals per metric ton of pulp produced. The main types of mill waste are sludge from wastewater treatment plants, ash from hog fuel boilers, dregs, grits, and lime mud from causticizing plants and lime dust from lime kilns. Of these, about half is disposed of in landfills, which highlights the need and potential for waste recycling and utilization. Sludge is either incinerated in hog fuel boilers to generate steam and power or used in various forms of land application, including land spreading, composting, or as an additive for landfill or mine waste covers. The majority of hog fuel boiler ash and causticizing plant residues is landfilled. Alkaline residuals can be conditioned for use in land application, manufacture of construction materials, and production of aggregates for road work. This technical review summarizes residuals utilization methods that have been applied in pulp and paper mills at demonstration- or full-scale, and therefore may act as a guide for mill managers and operators whose goal is to diminish the costs and the environmental impact of waste management.
Journal articles
Magazine articles
Determining operating variables that impact internal fiber bonding using Wedge statistical analysis methods, TAPPI Journal November 2021
ABSTRACT: In this study, Wedge statistical analysis tools were used to collect, collate, clean up, plot, and analyze several years of operational data from a commercial paper machine. The z-direction tensile (ZDT) and Scott Bond tests were chosen as representative of fiber bond strength. After analyzing thousands of operational parameters, the ones with the most significant impact upon ZDT involved starch application method, starch penetration, and the amount of starch applied. Scott bond was found to be significantly impacted by formation and refining. Final calendering of the paper web has also shown an impact on internal fiber bonding.
Journal articles
Magazine articles
Development of paper quality parameter measurement in China, TAPPI Journal May 2022
ABSTRACT: Paper quality parameters are important indicators of paper production, such as paper moisture, basis weight, ash content, strength, and so on. This study focuses on the online measurement methods and development of paper basis weight, moisture, and ash measuring. First, the measurable paper parameters and quality control system products in China are analyzed. Then, the basis weight measurement methods, accuracy, and development are given in the range of 10~1000 g/m2. Third, the distinction between infrared and microwave methods for moisture measurement is discussed. Finally, the ash measurement is introduced. Production and consumption of tissue paper in China have continually increased during the past decade. Near-infrared light technology is mature for the measurement of paper parameters in the range of 10~200 g/m2 basis weight. However, the near-infrared online measurement of tissue paper is not widely used, and few tissue paper lines are equipped with this type of quality control system in China. Therefore, technology for near-infrared measurement of basis weight has a great potential market in the field of tissue paper production. This article analyzes the future development trend of near-infrared light in tissue paper basis weight measurement and summarizes the difficulties in near-infrared light measurement of tissue paper basis weight.
Journal articles
Magazine articles
Preparing prehydrolyzed kraft dissolving pulp via phosphotungstic acid prehydrolysis from grape branches, TAPPI Journal January 2022
ABSTRACT: Dissolving pulp was successful prepared via phosphotungstic acid (PTA) prehydrolysis kraft (PHK) cooking followed by an elementary chlorine-free (ECF) bleaching process from grape branches. The effects of prehydrolysis temperature, reaction time, and PTA concentration that potentially affect the quality of dissolving pulp product on chemical components of pulp were studied via an orthogonal experiment. The structure of lignin was activated during the PTA prehydrolysis phase, and lignin was easily removed during the following cooking process. Thus, relatively mild conditions (140°C, 100 min) can be used in the cooking process. During the prehydrolysis phase, temperature exhibited the most significant influence on the cellulose purity of the obtained pulp fiber, followed by reaction time and PTA concentration. The optimized prehydrolysis conditions were as follows: prehydrolysis temperature, 145°C; reaction time, 75 min; and PTA concentration, 1 wt%. Whether the excessively high prehydrolysis temperature or prolonging the reaction time did not favor the retention of long chain cellulose, the delignification selectivity for the cooking process could not be further improved by excessive PTA loading. Under these prehydrolysis conditions, 94.1% and 29.0% for a-cellulose content and total yield could be achieved after the given cooking and bleaching conditions, respectively. Moreover, the chemical structure and crystal form of cellulose were scarcely changed after PTA prehydrolysis, which could be confirmed by results from Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). PTA prehydrolysis could be considered as an alternative method for preparing PHK dissolving pulp under relatively mild cooking conditions.
Journal articles
Magazine articles
Improved deinking and stickies removal
Improved deinking and stickies removal, TAPPI JOURNAL November 2017
Journal articles
Magazine articles
Editorial: Special pulping and engineering issues of TAPPI Journal yield important recovery cycle research, TAPPI Journal June 2024
ABSTRACT: The June issue of TAPPI Journal, which is dominated by recovery cycle topics, is the last PEERS issue organized by Dr. Peter Hart, the former editor-in-chief who passed away this past May. Peter, who was heavily involved with TAPPI’s Pulp Manufacture Division and various pulping-related committees, also started working with conference technical program planning starting in 2005 with the Engineering, Pulping and Environmental (EPE) Conference, which was the precursor to the more recent Pulping, Engineering, Environmental, Recycling and Sustainability (PEERS) Conference. He was also involved with other conference planning, including that for the International Pulp Bleaching Conference. In addition, Peter was a yearly attendee of such conferences starting as far back as 1990.
Journal articles
Magazine articles
Flocculation of fiber suspensions studied by Rheo-OCT, TAPPI Journal September 2024
ABSTRACT: When dealing with papermaking fiber suspensions, particle flocculation takes place even before the paper web is formed. The particle flocculation depends on several aspects, including particle mass concentration (consistency), particle collisions, electrochemical interactions promoted by chemical additives, etc. Due to its importance, fiber suspension flocculation has been studied for a long time in papermaking, and several methods have been developed for this purpose. The traditional techniques include, for example, focused beam reflectance microscopy (FBRM) and high-speed video imaging (HSVI). Recently, a new optical method, optical coherence tomography (OCT), has emerged for flocculation analysis. The advantages of OCT are the possibility to study opaque suspensions, its micron-llevel resolution, and its high data acquisition speed. The OCT measurements can be combined with rheological (Rheo) measurements, allowing simultaneous measurement of both the time evolution of the floc size and the suspension viscosity. In this work, we used this approach, Rheo-OCT, to study the flocculation of suspensions of various papermaking furnishes. We analyzed the time evolution of the floc size and the fiber suspension viscosity when the studied papermaking suspensions were treated with highly refined furnish (HRF) — a furnish that contained a significant amount of micofibrillated cellulose (MFC)-type fibrils — and/or chemical additives. Such studies can lead to a better understanding of the impact of flocculation on the produced paper web in terms of qualities like formation, drainage potential, and strength behavior.
Journal articles
Magazine articles
Development of reinforced paper and mitigation of the challenges of raw material availability by utilizing Areca nut leaf, TAPPI Journal September 2022
ABSTRACT: Paper industries are facing a raw material crisis and searching for alternate raw materials that may be able to help mitigate the issue. Many industries use agro-waste as a raw material, irrespective of it having low bleachability and poor mechanical strength. Areca nut leaf (ANL) is a nonwood-based material that may be acceptable as an alternate source of raw material that contains 61.5% holocellulose and 13.6% lignin, which is comparable to other agro-wastes and hardwood pulps. Kraft anthraquinone pulping with 20% active alkali as sodium oxide (Na2O), 25% sulfidity, and 0.05% anthraquinone produced 15 kappa pulps with about 38.5% pulping yield. The bleachability of ANL pulp was good, and 83.5% ISO brightness could be achieved using the D0(EOP)D1 bleaching sequence. The ANL fiber has 33.8% better tensile, 54.5% better tear, and 15.2% better burst index than hardwood fiber. Similarly, 60.4% better tensile, 56.5% better tear, and 21.7% better burst index were observed in ANL than in wheat straw. Thus, the study revealed that Areca nut leaf can be used as an alternative raw material for papermaking, as well as to improve the physical property of paper products by blending it with inferior quality pulp.
Journal articles
Magazine articles
Improvements in oil and grease resistance (OGR) test methodology for waterborne barrier coatings, TAPPI Journal November 2022
ABSTRACT: Paper-based food packaging is becoming more popular due to consumer demands for sustainable packaging options. Waterborne paper coatings that provide performance properties (i.e., resistance to oil and grease) not inherent to paper and board substrates offer improved sustainability profiles over earlier paper treatment options, including fluorocarbon treatment and coating with extruded plastics. The continued development of new paper coating technologies requires re-evaluation of current test methods and development of new methods to ensure lab evaluations can serve as accurate predictors of real-world performance. This paper provides an overview of commonly used oil and grease resistance (OGR) test methods within the paper coatings industry, and then describes improvements and developments made to two key methods: the 3M Kit test and an internally developed oil breakthrough test. The combined use of these adapted methods provides a more efficient testing workflow and a more complete understanding of the OGR performance of barrier coatings.