Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 31–40 of 293 results (Duration : 0.01 seconds)
Journal articles
Magazine articles
Open Access
Probing the molecular weights of sweetgum and pine kraft lignin fractions, TAPPI Journal June 2021

ABSTRACT: The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physico-chemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30•150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to determine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weight-lignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.

Journal articles
Magazine articles
Open Access
Control of malodorous gases emission from wet-end white water with hydrogen peroxide, TAPPI Journal October 2021

ABSTRACT: White water is highly recycled in the papermaking process so that its quality is easily deteriorated, thus producing lots of malodorous gases that are extremely harmful to human health and the environment. In this paper, the effect of hydrogen peroxide (H2O2) on the control of malodorous gases released from white water was investigated. The results showed that the released amount of total volatile organic compounds (TVOC) decreased gradually with the increase of H2O2 dosage. Specifically, the TVOC emission reached the minimum as the H2O2 dosage was 1.5 mmol/L, and meanwhile, the hydrogen sulfide (H2S) and ammonia (NH3) were almost completely removed. It was also found that pH had little effect on the release of TVOC as H2O2 was added, but it evidently affect-ed the release of H2S and NH3. When the pH value of the white water was changed to 4.0 or 9.0, the emission of TVOC decreased slightly, while both H2S and NH3 were completely removed in both cases. The ferrous ions (Fe2+) and the copper ions (Cu2+) were found to promote the generation of hydroxyl radicals (HOœ) out of H2O2, enhancing its inhibition on the release of malodorous gases from white water. The Fe2+/H2O2 system and Cu2+/H2O2 system exhibited similar efficiency in inhibiting the TVOC releasing, whereas the Cu2+/H2O2 system showed better perfor-mance in removing H2S and NH3.

Journal articles
Magazine articles
Open Access
Evaluation of rice straw for purification of lovastatin, TAPPI Journal November 2021

ABSTRACT: Cholesterol synthesis in the human body can be catalyzed by the coenzyme HMG-CoA reductase, and lovastatin, a key enzyme inhibitor, can reduce hypercholesterolemia. Lovastatin can be obtained as a secondary metabolite of Aspergillus terreus ATCC 20542. In this study, rice straw of lignocellulose was used in aeration and agitation bath fermentation in a 1-L flask, and a maximal crude extraction rate of 473 mg/L lovastatin was obtained. The crude extract was treated with silica gel (230•400 mesh) column chromatography. Ethyl acetate/ethanol (95%) was used as the mobile phase, and isolation was performed through elution with various ethyl acetate/ethanol ratios. The highest production rate of 153 mg/L was achieved with ethyl acetate/ethanol in a ratio of 8:2. The lovastatin gained from the crude extract was added to 12 fractions treated with 0.001 N alkali, and acetone was then added. After 24 h of recrystallization at 4°C, the extract underwent high-performance liquid chromatography. The purity had increased from 25% to 84.6%, and the recovery rate was 65.2%.

Journal articles
Magazine articles
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020

ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.

Journal articles
Magazine articles
Open Access
Synthesis of filtrate reducer from biogas residue and its application in drilling fluid, TAPPI Journal March 2020

ABSTRACT: Biogas residues (BR) containing cellulose and lignin are produced with the rapid development of biogas engineering. BR can be used to prepare the filtrate reducer of water-based drilling fluid in oilfields by chemical modification. BR from anaerobically fermenting grain stillage was alkalized and etherified by caustic soda and chloroacetic acid to prepare filtrate reducer, which was named as FBR. The long-chain crystalline polysaccharides were selected as dispersing agents (DA), and the water-soluble silicate was used as the cross-linking agent. After the hot rolling of FBR in saturated saltwater base mud for 16 h at 120°C, the filtration loss was increased from 7.20 mL/30 min before aging to 8.80 mL/30 min after aging. Compared with the commercial filtrate reducers, FBR had better tolerance to high temperature and salt, and lower cost.

Magazine articles
Open Access
Views from the top: ceos offer global perspectives on the pulp and paper industries, TAPPI JOURNAL, August 1999, Vol. 82(8)

Views from the top: ceos offer global perspectives on the pulp and paper industries, TAPPI JOURNAL, August 1999, Vol. 82(8)

Journal articles
Magazine articles
Open Access
Compression refining: the future of refining? Application to Nordic bleached softwood kraft pulp, TAPPI Journal August 2024

ABSTRACT: A new compression refining technology based on the kneading of high consistency pulp has been selected and tested in various conditions with a model Nordic bleached softwood kraft (NBSK) pulp. The method uses a kneader mixer referred to as the ultra continuous mixer (UCM) to condition the pulp. Its performance levels were also compared with those obtained with traditional low consistency (LC) refining of the same pulp.Compression refining of the NBSK pulp with the UCM led to a much better °SR/strength compromise than conventional LC refining. High strength properties can also be achieved by compression refining, in a range similar to/or better than LC refining. The higher the strength required, the greater the advantages of this technology: for a given strength, a difference of up to 10°SR can be obtained as compared to LC refined pulp. Moreover, a higher tear index can be obtained with compression refining, since fiber cutting is greatly reduced.The lower °SR is due to the release of fewer cellulosic fines, which also results in the manufacturing of new papers combining a high strength and a high permeability that cannot be obtained with traditional LC refining. Indeed, with LC refining, a high strength is generally associated with a low permeability. Upscaling this technology seems to be possible since large production devices are already on the market for applications other than paper/pulp. With this new pulp behavior, papermakers will have to learn to think differently, as paper strength and °SR can now be decorrelated.

Journal articles
Magazine articles
Open Access
Effects of varying total titratable alkali and causticizing efficiency targets on kraft pulp mill productivity, TAPPI Journal March 2024

ABSTRACT: The kraft mill causticizing area is often overlooked and undervalued when it comes to mill optimization; however, the operation of the causticizing plant has downstream effects on the entire liquor cycle. Setting the right targets for the causticizing plant can have a tremendous effect on mill operating costs, as well as push the production bottleneck from one unit operation to another. The key performance parameters associated with the causticizing plant itself are liquor total titratable alkali (TTA) and causticizing efficiency. Individual facilities choose their TTA and causticizing efficiency targets based on their goals, the limits of their equipment, and past experiences. This gives a variety of operating strategies in practice, but what are the implications for optimizing total titratable alkali and causticizing efficiency, and what level of optimization can be achieved through implementation of modern technology? This paper reviews the results of several different operational strategies and models the effects of these different approaches on kraft mill liquor cycle.

Journal articles
Magazine articles
Open Access
On the usage of online fiber measurements for predicting bleached eucalyptus kraft pulp tensile index — an industrial case, TAPPI Journal July 2022

ABSTRACT: Cellulose pulp’s physical-mechanical properties are determined by laboratory tests obtained from prepared handsheets. However, this procedure is time intensive and presents a lead time until the results are available, hindering its utilization for monitoring and decision-making in a pulp mill. In this context, developing real-time solutions for physical-mechanical properties prediction is fundamental. This work applied a mathematical modeling approach to develop a soft sensor for tensile index monitoring. The mathematical model considers online morphology measurements obtained from the last bleaching stage outlet stream and important process variables for tensile index prediction. The results obtained are satisfactory compared to laboratory results, presenting a mean absolute percentual error of 2.5%, which agrees with the laboratory testing method’s reproducibility.

Journal articles
Magazine articles
Open Access
Investigation of the Cellulose-Water Relationship by the Pressure Plate Method, TAPPI Journal July 2022

ABSTRACT: The swelling and water retention properties of pulp fibers are of basic importance in papermaking.