Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Effects of different ammonium lignosulfonate contents on the crystallization, rheological behaviors, and thermal and mechanical properties of ethylene propylene diene monomer/polypropylene/ammonium lignosulfonate composites, TAPPI Journal January 2020
ABSTRACT: Thermoplastic elastomer (TPE), made from ethylene propylene diene monomer (EPDM) and polypropylene (PP) based on reactive blending, has an excellent processing performance and characteristics and a wide range of applications. However, there are currently no reports in the literature regarding the usage of TPE in making composite boards. In this paper, EPDM, PP, and ammonium lignosulfonate (AL) were used as the raw materials, polyethylene wax was used as the plasticizer, and a dicumyl peroxide vulcanization system with dynamic vulcanization was used to make a new kind of composite material. This research studied the influences of the AL contents on the crystallization behaviors, rheological properties, thermal properties, and mechanical properties of the composites. The results showed that the AL content had a noticeable impact on the performance of the composite board. Accordingly, this kind of composite material can be used as an elastomer material for the core layer of laminated flooring.
Journal articles
Magazine articles
Production of antimicrobial paper using nanosilver, nanocellulose, and chitosan from a coronavirus perspective, TAPPI Journal July 2021
ABSTRACT: The pulp and paper industry has an opportunity to play a vital role in breaking the spread of the COVID-19 pandemic through production that supports widespread use of antimicrobial paper. This paper provides a brief review of paper and paper-related industries, such as those producing relevant additives, and R&D organizations that are actively engaged in developing antimicrobial papers. The focus here is on the potential of three nano-additives for use in production of antimicrobial papers that combat coronavirus: nanosilver, nanocellulose, and chitosan. Various recent developments in relevant areas and concepts underlining the fight against coronavirus are also covered, as are related terms and concepts.
Journal articles
Magazine articles
Nanocellulose•cationic starch• colloidal silica systems for papermaking: Effects on process and paper properties, TAPPI Journal October 2022
ABSTRACT: Laboratory tests were conducted to better understand effects on the papermaking process and handsheets when recycled copy paper furnish was treated with combinations of nanofibrillated cellulose (NFC), cationic starch, colloidal silica, and cationic retention aid (cPAM; cationic polyacrylamide). Dosage-response experiments helped to define conditions leading to favorable processing outcomes, including dewatering rates and the efficiency of fine-particle retention during papermaking. Effects were found to depend on the addition amounts of cationic starch and colloidal silica added to the system. It was shown that the presence of a polymer additive such as cationic starch was essential in order to achieve large strength gains with simultaneous usage of NFC.
Journal articles
Magazine articles
Understanding extensibility of paper: Role of fiber elongation and fiber bonding, TAPPI Journal March 2020
ABSTRACT: The tensile tests of individual bleached softwood kraft pulp fibers and sheets, as well as the micro-mechanical simulation of the fiber network, suggest that only a part of the elongation potential of individual fibers is utilized in the elongation of the sheet. The stress-strain curves of two actual individual pulp fibers and one mimicked classic stress-strain behavior of fiber were applied to a micromechanical simulation of random fiber networks. Both the experimental results and the micromechanical simulations indicated that fiber bonding has an important role not only in determining the strength but also the elongation of fiber networks. Additionally, the results indicate that the shape of the stress-strain curve of individual pulp fibers may have a significant influence on the shape of the stress-strain curve of a paper sheet. A large increase in elongation and strength of paper can be reached only by strengthening fiber-fiber bonding, as demonstrated by the experimental handsheets containing starch and cellulose microfibrils and by the micromechanical simulations. The key conclusion related to this investigation was that simulated uniform inter-fiber bond strength does not influence the shape of the stress-strain curve of the fiber network until the bonds fail, whereas the number of bonds has an influence on the activation of the fiber network and on the shape of the whole stress-strain curve.
Journal articles
Preparation and characterization of bioactive and breathable
Preparation and characterization of bioactive and breathable polyvinyl alcohol nanowebs using a combinational approach, October 2016 TAPPI JOURNAL
Journal articles
Magazine articles
Research needs for nanocellulose commercialization and applications
INTRODUCTION: This short review deals with some applications and research needs for nanocellulosic (NC) materials; primarily cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial cellulose (BC). Whereas CNC and BC materials are fairly homogenous, CNF materials represent a wide sector of different materials, often with a high heterogeneity. This is due to different pretreatment methods (mechanical, chemical, enzymatic), woodbased or agricultural-based materials, delignification and bleaching procedures, etc. The purpose of this comprehensive review is not to discuss the various production methods, for which the reader may consult with a selected number of reviews [1-6]; thus, the focus is on practical applications. Practical applications and potential markets were also discussed some years ago by other investigators [7-8]. Upscaling and choice of pretreatment methods, as well as economic considerations and different business models, have also been discussed, along with: œ Toxicity and environmental issues [9-10] œ The complex characterization of cellulose nanomaterials [4] The reader should also be aware of new contenders to the three classic groups of cellulosic nanomaterials, which are already in a commercial phase. These include cellulose filaments [11-12] and materials from mechanical grinding processes [13], and these materials may be nanostructures or not, depending on our classification. Finally, as indicated by the editorial on p. 275, scientists are currently taking a deep dive into the fundamental features of nanocellulosic materials [14-15].
Journal articles
Calculation of single chain cellulose elasticity using fully atomistic modeling, TAPPI JOURNAL April 2011
Calculation of single chain cellulose elasticity using fully atomistic modeling, TAPPI JOURNAL April 2011
Journal articles
Magazine articles
Editoral: Investing in the future: Writing and peer-reviewing for TAPPI Journal, TAPPI Journal July 2024
ABSTRACT: Those who actively participate in TAPPI realize how much there is to gain from the networking, educational resources, career development, and other opportunities that come with this involvement. One important opportunity is the ability to share your work and expertise with others in your field, and an excellent way to do this is by taking part in the TAPPI Journal peer-review process, either as an author or a reviewer or both.
Journal articles
Magazine articles
Characterizing rheological behavior and fluidization of highly refined furnishes, TAPPI Journal April 2024
ABSTRACT: In this work, highly refined softwood bleached kraft pulp (SWBKP) furnishes, referred to here as XFC, were studied from the perspective of fiber suspension handling in processing. The rheology of the furnishes was studied with a rotational rheometer using a non-standard flow geometry to understand the viscosity development at different consistencies and the impact of temperature. For fluidization analysis during pipe flow, two optical methods were implemented; namely, optical coherence tomography (OCT) and high-speed video (HSV) imaging. The OCT was used to determine the small-scale floc structures near the pipe wall where the shear stress is highest, and the HSV imaging was applied for observing flow instabilities and XFC suspension uniformity at the pipe scale. All these issues can be significant in deciding the minimum flow rate required for a process pipe to get sufficient fluidization of XFC suspensions.
Journal articles
Magazine articles
Rheological behavior of magnetic pulp fiber suspensions, TAPPI Journal June 2021
ABSTRACT: This paper is focused on the rheology of magnetic pulp suspensions in absence and presence of an external magnetic field. Magnetic fibers were prepared by the lumen loading method using bleached eucalyptus fibers and cobalt ferrite (CoFe2O4) nanoparticles. The effect of mass consistency, temperature, concentration of magnetic fibers, and magnetic field strength on yield stress and apparent viscosity of the suspensions were investigated. In the absence of an applied field, a dependence of yield stress with consistency, as well as with the percentage of magnetic fibers present in the suspension, was found. In flow tests, all the suspensions exhibited shear-thinning behavior, showing that the viscosity is only affected by the consistency of the suspension. On the other hand, magnetorheological measurements show a negative effect of the applied magnetic field on the viscosity of the suspension.