Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 231–240 of 444 results (Duration : 0.012 seconds)
Journal articles
Magazine articles
Open Access
Effect of conductivity on paper and board machine performanc

Effect of conductivity on paper and board machine performance— a review and new experiences, TAPPI JOURNAL October 2017

Journal articles
Magazine articles
Open Access
Non-process elements in the recovery cycle of six Finnish kraft pulp mills, TAPPI Journal March 2023

ABSTRACT: In this work, the aim was to study the distribution and accumulation of the non-process elements (NPEs) in the recovery cycle of Finnish pulp mills and look at whether the geographical location (North vs. South) correlates with the current Finnish NPE levels. In addition, a comparison to older similar Finnish measurements was made with an attempt to analyze the reasons behind differences in the most typical non-process elements, aluminum (Al), silicon (Si), calcium (Ca), phosphorus (P), magnesium (Mg), manganese (Mn), chlorine (Cl), and potassium (K), taking into account the main elements in the white liquor, sodium (Na) and sulfur (S). The extensive laboratory results gained in this study are from seven sampling points at six pulp mills and present analytical data of metal concentrations. The data obtained presents an update to previous NPE studies. The levels found did not statistically differ between North and South Finland. The NPE levels, apart from phosphorus, found in Finnish pulp mills today have not changed considerably compared to the levels in earlier investigations in the 1990s. In the newest data, the phosphorus concentration was consistently higher in the as fired black liquor, electrostatic precipitator (ESP) ash, lime mud, and green liquor than in the previous results. In addition, the levels of Al, Si, Ca, P, and Mg in recovery boiler ESP ash were consistently higher compared to the older results. As the mills start to close their systems more, a stronger accumulation of NPEs can be expected, increasing the likelihood of more operational problems in the process. Further understanding of where the NPEs accumulate and how they can be most effectively removed will be valuable knowledge in the future.

Journal articles
Magazine articles
Open Access
Stiffness and strength properties of five paperboards and their moisture dependency, TAPPI Journal February 2020

ABSTRACT: Five commercial multiply folding boxboards made on the same paperboard machine have been analyzed. The paperboards were from the same product series but had different grammage (235, 255, 270, 315, 340 g/m2) and different bending stiffness. The paperboards are normally used to make packages, and because the bending stiffness and grammage varies, the performance of the packages will differ. Finite element simulations can be used to predict these differences, but for this to occur, the stiffness and strength properties need to be deter-mined. For efficient determination of the three-dimensional properties in the machine direction (MD), cross direction (CD), and Z direction (ZD), it is proposed that the paperboard should be characterized using in-plane tension, ZD-tension, shear strength profiles, and two-point bending. The proposed setups have been used to determine stiff-ness and strength properties at different relative humidity (20,% 50%, 70%, and 90% RH), and the mechanical proper-ties have been evaluated as a function of moisture ratio.There was a linear relation between mechanical properties and moisture ratio for each paperboard. When the data was normalized with respect to the standard climate (50% RH) and plotted as a function of moisture ratio, it was shown that the normalized mechanical properties for all paperboards coincided along one single line and could therefore be expressed as a linear function of moisture ratio and two constants.Consequently, it is possible to obtain the mechanical properties of a paperboard by knowing the structural properties for the preferred level of RH and the mechanical property for the standard climate (50% RH and 23°C).

Journal articles
Magazine articles
Open Access
Creating adaptive predictions for packaging-critical quality parameters using advanced analytics and machine learning, TAPPI Journal November 2019

ABSTRACT: Packaging manufacturers are challenged to achieve consistent strength targets and maximize pro-duction while reducing costs through smarter fiber utilization, chemical optimization, energy reduction, and more. With innovative instrumentation readily accessible, mills are collecting vast amounts of data that provide them with ever increasing visibility into their processes. Turning this visibility into actionable insight is key to successfully exceeding customer expectations and reducing costs. Predictive analytics supported by machine learning can provide real-time quality measures that remain robust and accurate in the face of changing machine conditions. These adaptive quality “soft sensors” allow for more informed, on-the-fly process changes; fast change detection; and process control optimization without requiring periodic model tuning.The use of predictive modeling in the paper industry has increased in recent years; however, little attention has been given to packaging finished quality. The use of machine learning to maintain prediction relevancy under ever-changing machine conditions is novel. In this paper, we demonstrate the process of establishing real-time, adaptive quality predictions in an industry focused on reel-to-reel quality control, and we discuss the value created through the availability and use of real-time critical quality.

Journal articles
Magazine articles
Open Access
On increasing wet-web strength with adhesive polymers, TAPPI JOURNAL February 2020

ABSTRACT: Fiber-fiber adhesion, called “bonding” in the old paper physics literature, is a critical component of the overall strength of dry paper. With freshly formed very wet pulp fiber webs, all evidence suggests there are no fiber-fiber crossings with significant adhesive joint strength. With water removal, a point will be reached where fiber-fiber adhesion starts to contribute to the overall wet-web strength.The literature reveals very few examples of polymers that increase fiber-fiber joint strength in freshly formed webs. Here, we summarize the literature and explain why it is so difficult to promote fiber-fiber wet adhesion with polymers. Nevertheless, ongoing research in areas as diverse as tissue engineering scaffolds and biomimetic adhesives gives clues to future developments. Advances in paper machine engineering have lessened the importance of wet-web strength. By contrast, a critical issue in many of the evolving nanocellulose technologies is the strength of objects first formed by aqueous processing, the green strength—the strength of wet bodies before drying. For exam-ple, 3-D printed nanocellulose objects and ultralow density cellulosic aerogels can be destroyed by capillary forces during drying. There is a need for adhesives that strengthen freshly formed, wet lignocellulosic joints.

Journal articles
Magazine articles
Open Access
Creasing severity and reverse-side cracking, TAPPI Journal April 2020

ABSTRACT: Crease cracking can be detrimental to the functionality and appearance of paperboard-based packaging. The effect of creasing severity on the degree of reverse-side crease cracking (bead-side of the crease) of paperboard was investigated. Samples were creased with a range of rule and channel geometries, and the cracking degree was quantified as the percent of cracked length relative to the total length of the crease. The cracking degree was typically below 5% at low crease penetration depths, but was exponentially higher beyond a critical penetration depth. A rule and channel combination with a wider clearance shifted the critical depth to larger values. The creasing severity parameter, termed the creasing draw, converged the cracking degree data from different rule and channel combinations to a single curve. The creasing draw was derived from the same analytical expres-sions as the transverse shear strain and quantifies the length of paper that is drawn into the channel during creasing. The critical draw is defined as the draw at which cracking becomes greater than 5%, which corresponds with the point at which cracking becomes exponential. The critical draw is a material/system parameter that defines the level below which cracking is minimal.

Journal articles
Magazine articles
Open Access
The role of hornification in the deterioration mechanism of physical properties of unrefined eucalyptus fibers during paper recycling, TAPPI Journal February 2024

ABSTRACT: Physical properties of cellulosic paper deteriorate significantly during paper recycling, which hinders the sustainable development of the paper industry. This work investigates the property deterioration mechanism and the role of hornification in the recycling process of unrefined eucalyptus fibers. The results showed that during the recycling process, the hornification gradually deepened, the fiber width gradually decreased, and the physical properties of the paper also gradually decreased. After five cycles of reuse, the relative bonding area decreased by 17.6%, while the relative bonding force decreased by 1.8%. Further results indicated that the physical property deterioration of the paper was closely related to the decrease of fiber bonding area. The fiber bonding area decreased linearly with the reduction of re-swollen fiber width during paper recycling. Re-swollen fiber width was closely related to the hornification. Hornification mainly reduces the bonding area of unrefined eucalyptus fiber rather than the bonding force. The work elucidates the role of hornification in the recycling process of unrefined eucalyptus fibers and the deterioration mechanism of paper physical properties, which will be helpful to control the property deterioration of paper and achieve a longer life cycle.

Journal articles
Magazine articles
Open Access
Editorial: Special coating issue contains highlighted works from TAPPICon 2023, TAPPI Journal November 2023

ABSTRACT: Did you know that TAPPI’s Coating and Graphic Arts Division has changed its name to Coating, Printing, and Surface Enhancement (CPSE) Division? This change occurred mid-year, as our members realized that the new name fits much better with the day-to-day workings of the Division, as well as the broader activities to functionalize and add value to paper and paperboard that continue to expand into new arenas.

Journal articles
Magazine articles
Open Access
Surface modification of TiO2 with MPS and its effects on the wettability and physical properties of Kawayan Kiling (Bambusa vulgaris Schrad ex. Wendl) handsheets, TAPPI Jouranl April 2024

ABSTRACT: The need for hydrophobic papers has steadily increased over past years. These papers are often sought after as packaging materials and have high demand in the food industry and medicine. In this study, various concentrations of surface-modified TiO2-MPS were added to Kawayan Kiling (B. vulgaris) pulp at the wet-end section of handsheet formation. Surface-modified TiO2-MPS was made from nano-titanium (IV) oxide using 3-(trimethoxysilyl)propyl methacrylate as a coupling agent. The wettability of handsheets and physical properties were tested using various standard methods. Results reveal that the handsheets without surface-modified TiO2-MPS had the lowest water contact angle (WCA), while the handsheet with 12.34% (w/w) surface-modified TiO2-MPS had the highest WCA. At 17% (w/w) surfacemodified TiO2-MPS, the WCA rapidly declined. Handsheets with surface-modified TiO2-MPS have a rougher surface compared to the handsheets without chemicals and handsheets with unmodified TiO2. This roughness made the handsheet hydrophobic. The handsheet with 12.34% (w/w) unmodified TiO2 has a smoother surface than the control handsheet. Energy-dispersive X-ray spectroscopy (EDS) analysis shows that the handsheet with 12.34% (w/w) unmodified TiO2 contained titanium, while the handsheet with 12.34% (w/w) surface-modified TiO2-MPS contained both titanium and silicon. Generally, the physical properties of handsheets improved with surface-modified TiO2- MPS, especially grammage, bulk thickness, tensile index, and water absorptiveness, which showed statistically significant differences across treatments. The tear index did not differ between treatments.

Journal articles
Magazine articles
Open Access
Application of ATR-IR measurements to predict the deinking efficiency of UV-cured inks, TAPPI Journal January 2022

ABSTRACT: In recent years, ultraviolet (UV)-curable ink has been developed and widely used in various printing applications. However, using UV-printed products (UV prints) in recovered paper recycling causes end-product dirt specks and quality issues. A new method was developed that can distinguish UV prints from other prints by means of attenuated total reflectance infrared (ATR-IR) spectroscopy. Application of this method could allow more efficient use of UV prints as raw materials for paper recycling.First, a mill trial was performed using UV prints alone as raw materials in a deinked pulp (DIP) process. Second, test prints were made with four types of UV inks: a conventional UV ink and three different highly-sensitive UV inks. Each print sample had four levels of four-color ink coverage patterns (100%, 75%, 50%, and 25%). Next, deinkability of all prints was evaluated by laboratory experiments. Finally, each print was measured using the ATR-IR method, and the relationship between the IR spectra and deinkability was investigated. Mill trial results showed that UV prints caused more than 20 times as many dirt specks as those printed with conventional oil-based ink. There were variations in recycling performance among UV prints taken from bales used for the mill trial. Lab tests clearly revealed that not all UV-printed products lead to dirt specks. In order to clarify the factors that affected deinkability of UV prints, the print samples were investigated by lab experiments. Key findings from lab experiments include: • The number of dirt specks larger than 250 µm in diameter increased as the ink coverage increased. • Higher ink coverage area showed stronger intensity of ATR-IR spectral bands associated with inks. These results indicate that deinkability of UV prints could be predicted by analysis of ATR-IR spectra. • Finally, the method was applied for assessment of recovered paper from commercial printing presses. It was confirmed that this method made it possible to distinguish easily deinkable UV prints from other UV prints. Based on these findings, we concluded that the ATR-IR method is applicable for inspection of incoming recovered paper.