Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Black liquor evaporator upgrades— life cycle cost analysis, TAPPI Journal March 2021
ABSTRACT: Black liquor evaporation is generally the most energy intensive unit operation in a pulp and paper manufacturing facility. The black liquor evaporators can represent a third or more of the total mill steam usage, followed by the paper machine and digester. Evaporator steam economy is defined as the unit mass of steam required to evaporate a unit mass of water from black liquor (i.e., lb/lb or kg/kg.) The economy is determined by the number of effects in an evaporator train and the system configuration. Older systems use four to six effects, most of which are the long tube vertical rising film type. Newer systems may be designed with seven or even eight effects using falling film and forced circulation crystallization technology for high product solids. The median age of all North American evaporator systems is 44 years. Roughly 25% of the current North American operating systems are 54 years or older. Older systems require more periodic maintenance and have a higher risk of unplanned downtime. Also, older systems have chronic issues with persistent liquor and vapor leaks, shell wall thinning, corrosion, and plugged tubes. Often these issues worsen to the point of requiring rebuild or replacement. When considering the age, technology, and lower efficiency of older systems, a major rebuild or new system may be warranted. The intent of this paper is to review the current state of black liquor evaporator systems in North America and present a basic method for determining whether a major rebuild or new installation is warrant-ed using total life cycle cost analysis (LCCA).
Journal articles
Magazine articles
Impact of dissolved matter in the oxygen delignifcation stag
Impact of dissolved matter in the oxygen delignifcation stage, TAPPI JOURNAL May 2017
Journal articles
Magazine articles
Using multistage models to evaluate how pulp washing after the first extraction stage impacts elemental chlorine-free bleach demand, TAPPI Journal November 2018
Using multistage models to evaluate how pulp washing after the first extraction stage impacts elemental chlorine-free bleach demand, TAPPI Journal November 2018
Journal articles
Magazine articles
Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants, TAPPI Journal November 2018
Understanding the risks and rewards of using 50% vs. 10% strength peroxide in pulp bleach plants, TAPPI Journal November 2018
Journal articles
Magazine articles
Technological evaluation of Pinus maximinoi wood for industrial use in kraft pulp production, TAPPI Journal August 2021
ABSTRACT: This study characterized Pinus maximinoi wood and evaluated its performance for pulp production. Samples of Pinus taeda wood were used as reference material. For both species, wood chips from 14-year-old trees were used for the technological characterization, pulping, bleaching process analysis, and pulp properties. A modified kraft pulping process was carried out targeting kappa number 28±5% on brownstock pulp. The bleaching sequence was applied for bleached pulp with final brightness of 87±1 % ISO. Refinability and resistance properties were measured in the bleached pulps. Compared to P. taeda wood, P. maximinoi showed slightly higher basic density (0.399 g/cm³) and higher holocellulose (64.5%), lignin (31.1%), and extractives content (4.5%), along with lower ash content (0.16%). P. maximinoi tracheids showed greater wall thickness (6.4 µm) when compared to P. taeda tracheids. For the same kappa number, P. maximinoi and P. taeda resulted in similar screened yield, with an advantage observed for P. maximinoi, which resulted in lower specific wood consumption (5.281 m³/o.d. metric ton), and lower black liquor solids (1.613 metric tons/o.d. metric ton). After oxygen delignification, P. maximinoi pulp showed higher efficiency on kappa reduction (67.2%) and similar bleaching chemical demand as P. taeda pulp. Compared to P. taeda pulps, the refined P. maximinoi pulps had similar results and the bulk property was 10% higher. Results showed that P. maximinoi is an interesting alternative raw material for softwood pulp production in Brazil.
Journal articles
Magazine articles
Can carbon capture be a new revenue opportunity for the pulp and paper sector?, TAPPI Journal August 2021
ABSTRACT: Transition towards carbon neutrality will require application of negative carbon emission technologies (NETs). This creates a new opportunity for the industry in the near future. The pulp and paper industry already utilizes vast amounts of biomass and produces large amounts of biogenic carbon dioxide. The industry is well poised for the use of bioenergy with carbon capture and storage (BECCS), which is considered as one of the key NETs. If the captured carbon dioxide can be used to manufacture green fuels to replace fossil ones, then this will generate a huge additional market where pulp and paper mills are on the front line. The objective of this study is to evaluate future trends and policies affecting the pulp and paper industry and to describe how a carbon neutral or carbon negative pulp and paper production process can be viable. Such policies include, as examples, price of carbon dioxide allowances or support for green fuel production and BECCS implementation. It is known that profitability differs depending on mill type, performance, energy efficiency, or carbon dioxide intensity. The results give fresh understanding on the potential for investing in negative emission technologies. Carbon capture or green fuel production can be economical with an emission trade system, depending on electricity price, green fuel price, negative emission credit, and a mill’s emission profile. However, feasibility does not seem to evidently correlate with the performance, technical age, or the measured efficiency of the mill.
Journal articles
Magazine articles
Editorial: TAPPI Standards development: Authors and reviewers are welcome, TAPPI Journal July 2021
ABSTRACT: Readers of TAPPI Journal (TJ) and those involved with R&D and process and product quality will be familiar with TAPPI Standard Test Methods. These test methods are necessary for validating research and ensuring the quality of end products. In addition to test methods, TAPPI also publishes information that isn’t directly related to test methods, such as technical information and definitions, which include specifications, guidelines, and glossaries. All Standards information is developed with the consensus of a technical working group that adheres to set procedures.
Journal articles
Magazine articles
Investigation of the influencing factors in odor emission from wet-end white water, TAPPI Journal October 2020
ABSTRACT: Emission of malodorous gases, such as volatile organic compounds (VOCs), hydrogen sulfide (H2S), and ammonia (NH3) during pulping and papermaking has caused certain harm to the air environment and human health. This paper investigated the influencing factors of odor emission from wet-end white water during the production of bobbin paper in a papermaking mill using old corrugated containers (OCC) as raw material. The concentration of malodorous gases emitted from wet-end white water was determined with pump-suction gas detectors. The results indicated that low temperature could limit the release of malodorous gases from white water. Specifically, no total volatile organic compounds (TVOC), H2S, and NH3 was detected at a temperature of 15°C. The concentrations of malodorous gases were slightly increased when temperature increased to 25°C. When temperature was 55°C, the released concentrations of TVOC, H2S, and NH3 were 22.3 mg/m3, 5.91 mg/m3, and 2.78 mg/m3, respectively. Therefore, the content of malodorous gases significantly increased with the temperature increase. The stirring of white water accelerated the release of malodorous gases, and the release rate sped up as the stirring speed increased. However, the total amount of malodorous gases released were basically the same as the static state. Furthermore, the higher the concentration of white water, the greater the amount of malodorous gases released. The pH had little influence on the TVOC release, whereas it significantly affected the release of H2S and NH3. With the increase of pH value, the released amount of H2S and NH3 gradually decreased. When pH reached 9.0, the release amount of H2S and NH3 was almost zero, proving that an alkaline condition inhibits the release of H2S and NH3.
Journal articles
Magazine articles
Lignin carbohydrate complex studies during kraft pulping for producing paper grade pulp from birch, TAPPI Journal September 2020
ABSTRACT: Paper grade pulp production across the globe is dominated by the kraft process using different lignocellulosic raw materials. Delignification is achieved around 90% using different chemical treatments. A bottleneck for complete delignification is the presence of residual covalent bonds that prevail between lignin and carbohydrate even after severe chemical pulping and oxygen delignification steps. Different covalent bonds are present in native wood that sustain drastic pulping conditions. In this study, 100% birch wood was used for producing paper grade pulp, and the lignin carbohydrate bonds were analyzed at different stages of the kraft cook. The lignin carbohydrate bonds that were responsible for residual lignin retention in unbleached pulp were compared and analyzed with the original lignin-carbohydrate complex (LCC) bonds in native birch wood. It was shown that lignin remaining after pulping and oxygen delignification was mainly bound to xylan, whereas the lignin bound to glucomannan was for the most part degraded.
Journal articles
Magazine articles
Fate of phosphorus in the recovery cycle of the kraft pulping process, TAPPI Journal March 2020
ABSTRACT: The accumulation of nonprocess elements in the recovery cycle is a common problem for kraft pulp mills trying to reduce their water closure or to utilize biofuels in their lime kiln. Nonprocess elements such as magnesium (Mg), manganese (Mn), silicon (Si), aluminum (Al), and phosphorus (P) enter the recovery cycle via wood, make-up chemicals, lime rock, biofuels, and process water. The main purge point for these elements is green liquor dregs and lime mud. If not purged, these elements can cause operational problems for the mill. Phosphorus reacts with calcium oxide (CaO) in the lime during slaking; as a result, part of the lime is unavailable for slaking reactions. The first part of this project, through laboratory work, identified rhenanite (NaCa(PO4)) as the form of P in the lime cycle and showed the negative effect of P on the availability of the lime. The second part of this project involved field studies and performing a mass balance for P at a Canadian kraft pulp mill.