Search
Use the search bar or filters below to find any TAPPI product or publication.
Filters
Content Type
Publications
Level of Knowledge
Collections
Journal articles
Magazine articles
Effect of conductivity on paper and board machine performanc
Effect of conductivity on paper and board machine performance— a review and new experiences, TAPPI JOURNAL October 2017
Journal articles
Magazine articles
Stiffness and strength properties of five paperboards and their moisture dependency, TAPPI Journal February 2020
ABSTRACT: Five commercial multiply folding boxboards made on the same paperboard machine have been analyzed. The paperboards were from the same product series but had different grammage (235, 255, 270, 315, 340 g/m2) and different bending stiffness. The paperboards are normally used to make packages, and because the bending stiffness and grammage varies, the performance of the packages will differ. Finite element simulations can be used to predict these differences, but for this to occur, the stiffness and strength properties need to be deter-mined. For efficient determination of the three-dimensional properties in the machine direction (MD), cross direction (CD), and Z direction (ZD), it is proposed that the paperboard should be characterized using in-plane tension, ZD-tension, shear strength profiles, and two-point bending. The proposed setups have been used to determine stiff-ness and strength properties at different relative humidity (20,% 50%, 70%, and 90% RH), and the mechanical proper-ties have been evaluated as a function of moisture ratio.There was a linear relation between mechanical properties and moisture ratio for each paperboard. When the data was normalized with respect to the standard climate (50% RH) and plotted as a function of moisture ratio, it was shown that the normalized mechanical properties for all paperboards coincided along one single line and could therefore be expressed as a linear function of moisture ratio and two constants.Consequently, it is possible to obtain the mechanical properties of a paperboard by knowing the structural properties for the preferred level of RH and the mechanical property for the standard climate (50% RH and 23°C).
Journal articles
Magazine articles
Creating adaptive predictions for packaging-critical quality parameters using advanced analytics and machine learning, TAPPI Journal November 2019
ABSTRACT: Packaging manufacturers are challenged to achieve consistent strength targets and maximize pro-duction while reducing costs through smarter fiber utilization, chemical optimization, energy reduction, and more. With innovative instrumentation readily accessible, mills are collecting vast amounts of data that provide them with ever increasing visibility into their processes. Turning this visibility into actionable insight is key to successfully exceeding customer expectations and reducing costs. Predictive analytics supported by machine learning can provide real-time quality measures that remain robust and accurate in the face of changing machine conditions. These adaptive quality “soft sensors” allow for more informed, on-the-fly process changes; fast change detection; and process control optimization without requiring periodic model tuning.The use of predictive modeling in the paper industry has increased in recent years; however, little attention has been given to packaging finished quality. The use of machine learning to maintain prediction relevancy under ever-changing machine conditions is novel. In this paper, we demonstrate the process of establishing real-time, adaptive quality predictions in an industry focused on reel-to-reel quality control, and we discuss the value created through the availability and use of real-time critical quality.
Journal articles
Magazine articles
Polyvinyl alcohol as foaming agent in foam formed paper, TAPPI JOURNAL August 2019
ABSTRACT: The use of polyvinyl alcohol (PVOH or PVA) as a foaming agent in foam formed paper was investigated. Polyvinyl alcohol is a linear, nonionic water-soluble polymer. It has hydrophobic and hydrophilic parts that give it a surface-active character. PVOH is mainly characterized by degree of hydrolysis and molar mass. Degree of hydrolysis is given as mol-% hydroxyl groups on the polymer. Molar mass is measured indirectly by measuring the viscosity of a 4% PVOH solution. The results show that the degree of hydrolysis of PVOH had a strong effect on the foamability of PVOH. Foamability decreased strongly when the degree of hydrolysis increased from 88 to 98 mol-%. The effect of molar mass on foamability was weaker. We saw an increase in foam stability and bubble size with increasing molar mass, but we did not see any effect on maximum air content. PVOH dosage needed to reach >70% air content (F) varied from 2 g/l up to 10.5 g/l, and the lowest addition levels of PVOH needed were achieved with a low molar mass PVOH with a low degree of hydrolysis. The best strength properties were achieved when using fully hydrolyzed PVOH as the foaming agent. Strength properties (both in- and out-of-plane) of samples made using PVOH were better than those made using an anionic foaming agent (sodium dodecyl sulfate, SDS). By adding PVOH binder fibers to the pulp, we were able to further enhance the strength properties of paper and board.
Journal articles
Magazine articles
On increasing wet-web strength with adhesive polymers, TAPPI JOURNAL February 2020
ABSTRACT: Fiber-fiber adhesion, called “bonding” in the old paper physics literature, is a critical component of the overall strength of dry paper. With freshly formed very wet pulp fiber webs, all evidence suggests there are no fiber-fiber crossings with significant adhesive joint strength. With water removal, a point will be reached where fiber-fiber adhesion starts to contribute to the overall wet-web strength.The literature reveals very few examples of polymers that increase fiber-fiber joint strength in freshly formed webs. Here, we summarize the literature and explain why it is so difficult to promote fiber-fiber wet adhesion with polymers. Nevertheless, ongoing research in areas as diverse as tissue engineering scaffolds and biomimetic adhesives gives clues to future developments. Advances in paper machine engineering have lessened the importance of wet-web strength. By contrast, a critical issue in many of the evolving nanocellulose technologies is the strength of objects first formed by aqueous processing, the green strength—the strength of wet bodies before drying. For exam-ple, 3-D printed nanocellulose objects and ultralow density cellulosic aerogels can be destroyed by capillary forces during drying. There is a need for adhesives that strengthen freshly formed, wet lignocellulosic joints.
Journal articles
Magazine articles
Critical parameters for tall oil separation I: The importance of ration of fatty acids to rosin acids, TAPPI Journal September 2019
ABSTRACT: Tall oil is a valuable byproduct in chemical pulping of wood, and its fractions have a large spectrum of applications as chemical precursors, detergents, and fuel. High recovery of tall oil is important for the economic and environmental profile of chemical pulp mills. The purpose of this study was to investigate critical parameters of tall oil separation from black liquor. To investigate this in a controlled way, we developed a model test system using a “synthetic” black liquor (active cooking chemicals OH- and HS- ions), a complete process for soap skimming, and determination of recovered tall oil based on solvent extraction and colorimetric analysis, with good reproducibility. We used the developed system to study the effect of the ratio of fatty acids to rosin acids on tall oil separation. When high amounts of rosin acids were present, tall oil recovery was low, while high content of fatty acids above 60% significantly promoted tall oil separation. Therefore, manipulating the content of fatty acids in black liquor before the soap skimming step can significantly affect the tall oil solubility, and hence its separation. The findings open up chemical ways to improve the tall oil yield.
Journal articles
Magazine articles
A new technique for the measurement of show-through mottle of fine paper, TAPPI Journal September 2019
ABSTRACT: Mottling within print-through and show-through is caused by the variability of the local optical properties of the sheet. This mottling is visually disturbing and a mark of poor paper quality. The ability to predict print-through mottle of printed paper by measuring show-through mottle on the unprinted sheet would be a valuable asset for paper machine control.We examined the relationship between print-through mottle and show-through mottle. We worked with nine samples of 60 lb. uncoated fine paper (90 g/m2), from various North American paper companies, that were printed on an offset press, 400K (400% Black), on both sides. A show-through mottle instrumental determination technique was developed using an existing Fast Fourier Transform-based algorithm. The nine samples examined were ranked similarly by the visual evaluation of print-through mottle and by the instrumental determination of show-through mottle. We thus established that show-through on the unprinted sheet can be used as a reliable predictor of print-through, therefore saving time and money for papermakers. We also found a significant two-sidedness in show-through for some of the samples.
Magazine articles
Shop talk: concerning coefficient of friction, TAPPI JOURNAL, June 2000, Vol. 83(6)
Shop talk: concerning coefficient of friction, TAPPI JOURNAL, June 2000, Vol. 83(6)
Magazine articles
Corrosion-assisted cracking of duplex stainless Steels sn suction Roll applications, TAPPI JOURNAL, August 1994, Vol. 77(8)
Corrosion-assisted cracking of duplex stainless Steels sn suction Roll applications, TAPPI JOURNAL, August 1994, Vol. 77(8)
Magazine articles
A suction-roll shell material with improved corrosion-fatigue strength, TAPPI JOURNAL, December 1992, Vol. 75(12)
A suction-roll shell material with improved corrosion-fatigue strength, TAPPI JOURNAL, December 1992, Vol. 75(12)