Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 191–200 of 861 results (Duration : 0.012 seconds)
Magazine articles
Open Access
ASAM alkaline sulfite pulping process shows potential for large-scale application, TAPPI JOURNAL, April 1991, Vol. 74(4)

ASAM alkaline sulfite pulping process shows potential for large-scale application, TAPPI JOURNAL, April 1991, Vol. 74(4)

Magazine articles
Open Access
Effect of mos2 on corrosion inhibition of nlgi reference grease, TAPPI JOURNAL, October 1991, Vol. 74(10)

Effect of mos2 on corrosion inhibition of nlgi reference grease, TAPPI JOURNAL, October 1991, Vol. 74(10)

Journal articles
Magazine articles
Open Access
Effect of pressure and time on water absorption of coated paperboard based on a modified Cobb test method, TAPPI Journal April 2024

ABSTRACT: This manuscript presents the study of water absorption by paperboard subjected to water at high hydrostatic pressure based on a modified Cobb tester. The new tester is based on TAPPI Standard Test Method T 441; however, the water column can reach up to 550 mm. The evaluation consisted of measurements of water absorption for coated and uncoated paperboard at different exposure times from 5 s to 45 s and water column heights from 10 mm to 500 mm (corresponding to hydrostatic pressures 98 Pa and 4.9 kPa, respectively). The coatings were formulated as a combination of styrene acrylate (SA; two binder levels) and two types of ground calcium carbonates (differing particle sizes) to form the two pre-coating structures: open and closed. The coating weight was 6 g/m2 applied on 210 g/m2 solid bleached board (SBB). In addition, 210 g/m2 uncoated boards were studied. Characterization of the coatings was performed with scanning electron microscopy (SEM), mercury intrusion, and roughness. It was found that the new device properly mimics the conditions of the current Cobb tester. The characterization of the coating also confirmed the presence of more open/larger pores of open coatings, confirming the desired coating structure. The absorption of boards was mainly driven by exposure pressure by comparing with exposure time. This was already evident after shorter periods of exposure time at 5 s and also 15 s exposure time. Paperboards with open coatings showed slightly higher absorption than other boards.

Journal articles
Magazine articles
Open Access
Editorial: TAPPI Journal Best Research Paper for 2023 focuses on black liquor concentration using graphene oxide membranes, TAPPI Journal February 2024

ABSTRACT: TAPPI and the TAPPI Journal (TJ) Editorial Board would like congratulate the authors of the 2023 TAPPI Journal Best Research Paper Award and Honghi Tran Prize: Sam Rae, Ella V. Richards, Max Kleiman-Lynch, Brent D. Keller, and Brandon I. Macdonald. Their paper, “Pilot scale black liquor concentration using pressure driven membrane separation,” appeared on p. 223 of the April 2023 issue. This kraft recovery cycle research was recognized by the TAPPI Journal Editorial Board for its innovation, creativity, scientific merit, and clear expression of ideas.

Journal articles
Magazine articles
Open Access
Enhancing tissue wet pressing performance and dry end material efficiency for cost savings, TAPPI Journal May 2024

ABSTRACT: The steadily growing global tissue paper demand lays a foundation for new technologies targeting tissue production optimization, as well as improved material and time efficiency. Tissue making is an especially energy-intensive field of paper industry, creating unique demands for performance in wet pressing and drying processes to cut energy usage. Intelligent roll solutions offer new tools for tissue making to achieve these goals. These tools aim at improving press nip, moisture, and tension profiles; reeling nip and parent roll hardness profiles; rewinder runnability; and end product web handling characteristics in converting. Intelligent rolls can be utilized in all the main processes and positions on tissue production lines. With these tools, production cost reductions and energy savings can be obtained by optimizing the press nip-to-Yankee cylinder contact, avoiding moisture profile errors requiring overdrying with the Yankee hood and reducing reeling/winding broke under low nip load conditions typical to tissue windups. The intelligent roll system consists of a helically mounted force or temperature sensors, roll covers, measurement electronics, digital radio transmission, and a receiver system connected to a user interface or the mill automation system. What distinguishes these implementations is that no layout changes or added external measurement devices are required, helping to fit into compact tissue machine environments, regardless of the equipment type • traditional, hybrid, or through-air drying (TAD) concept. In tissue processing equipment, the optimal positions for these rolls are press nip rollers, reeling cylinders, rewinder or converting line paper lead rolls, or rewinder winding drums. In addition to these, temperature profile measurements are utilized, with the main application being the sheet temperature profile detection after Yankee drying for moisture profile and drying process optimization.

Journal articles
Magazine articles
Open Access
Z-directional testing of paperboard in combined tensile and compression loading, TAPPI Journal May 2024

ABSTRACT: The out-of-plane properties of paperboard are important in several converting applications such as printing, sealing, creasing, and calendering. A juxtaposed tensile and compression curve in the z direction (ZD) will, however, appear to have a kink or discontinuity at 0 stress. The purpose of the present work is to capture the continuous transition between tension and compression and to increase the understanding of the complex ZD properties of paperboard by cyclic testing. In this attempt to unify the ZD tensile and compressive behavior of paperboard, samples were laminated to the testing platens using heat seal laminate film. The method for adhering the samples was compared to samples that were laminated and glued to the testing platens. The edge effects of the cutting method were evaluated in compression testing with samples not attached to the testing platens. The flat slope seen in the initial part of the pure compression curve disappeared when the samples were laminated to the testing platens. The flat slope was instead replaced by a continuous response in the transition across 0 N. The stiffness in the transition region resembled the response in tensile testing. When the testing is cycled, the material exhibits a history dependence. Starting the cycle in either compression or tensile will show an effect on the stiffness at the transition, as well as the compressive stiffness. However, the ultimate tensile strength is unaffected.

Journal articles
Magazine articles
Open Access
Value creation by converting pulp mill flue gas streams to green fuels, TAPPI Journal March 2023

ABSTRACT: Climate change mitigation induces strong growth in renewable electricity production, partly driven by shifts in environmental policies and regulation. Intermittent renewable electricity requires supporting systems in the form of sustainable hydrocarbon chemicals such as transportation fuels. Bulk chemical production fits well into a pulp mill environment, given their large volumes, stable operation, and ample supply of biomass-based carbon feed-stock in the form of flue gases. Until now, the utilization of the flue gases from conventional operation of a pulp mill has received little attention. Harnessing these flue gases into usable products could offer additional value to mill operators, while also diversifying their product portfolio. However, electricity-based fuels and products require extra energy in the conversion step and may not be commercially competitive with current fossil products under the current regulation. There might also be uncertainties about future commodity prices. Thus, the objective of this study is to estimate the economic competitiveness and the added value of selected side products that could be produced alongside conventional pulp and paper products. A typical modern pulp mill is modeled in different product configurations and operational environments, which allows testing of various development paths. This illustrates how the overall energy and mass balance of a pulp mill would react to changes in different final products and other parameters. The focus of the study is in synthetic methanol, which is produced from flue gases and excess resources from the mill, with minimal interference to the pulping process. The results aid in assessing the necessity and magnitude of a premium payment for subsidizing green alter-natives to replace current fossil fuels and chemicals. Additionally, the results function as an indicator of the development state of the pulp and paper industry in the turmoil of climate change regulation. The results indicate that power-to-X systems offer one more viable pathway alternative for broadening the product portfolio of the pulp and paper sector, as well as opening new flexibility measures and services to grid stabilization. Market conditions were found to have a significant impact on the perceived profitability.

Journal articles
Magazine articles
Open Access
Research on flame-retardant paper prepared by the method of in-pulp addition of ammonium polyphosphate, TAPPI Journal May 2023

ABSTRACT: At present, the production of flame-retardant paper usually uses the impregnation method of phosphorus-nitrogen flame retardants in paper. There are few reports on the application of an in-pulp addition method. In this paper, the solubility of ammonium polyphosphate (APP) and its effect on flame-retardant paper were investigated for use in an in-pulp addition method. It was found that APP particles were square, with an average particle size of 21.88 µm. The particle size decreased significantly after immersion in water at 25°C for 24 h. Furthermore, most of the APPs were dissolved after immersion in water at 90°C for 0.5 h, and the residuals agglomerated and their shape turned into an amorphous form. The APP possessed strong electronegativity and could partially ionize in water. The solubility of APP was 0.18 g/100 mL water at 25°C and increased quickly when the temperature was higher than 30°C. Therefore, APP should be added to the pulp at temperatures below 30°C. The tensile strength of the paper initially increased with the addition of APP, and it reached the maximum value when the APP content was 10% and then gradually decreased. The limiting oxygen index (LOI) value of the paper was 28.7% when the added amount of APP was 30% and cationic polyacrylamide (CPAM) was 0.08%, reaching the flame-retardant level.

Journal articles
Magazine articles
Open Access
Editorial: PEERS and IBBC: TAPPI fall conferences address current and evolving challenges, TAPPI Journal August 2023

ABSTRACT: On November 5-8, TAPPI will host its 2023 Pulping, Engineering, Environmental, Recycling and Sustainability (PEERS) Conference. This year’s conference will be held in Atlanta and is co-located with TAPPI’s International Bioenergy & Bioproducts Conference (IBBC). Below are some highlights about what is in store for attendees.

Journal articles
Magazine articles
Open Access
Editorial: The state of cellulosic nanotechnology: June conference captures current and emerging trends, TAPPI Journal July 2023

ABSTRACT: From June 12-16, 253 participants from 18 countries gathered in Vancouver, BC, Canada, for TAPPI’s 2023 International Conference on Nanotechnology for Renewable Materials. Representatives from academia, industry, and federal research institutes could choose from among 140 technical presentations on production, characterization, applications, and functionalization of renewable nanomaterials.