Search

Use the search bar or filters below to find any TAPPI product or publication.

Showing 1,661–1,670 of 1,664 results (Duration : 0.009 seconds)
Journal articles
Magazine articles
Open Access
Equilibrium moisture content in wet pressing of paper, TAPPI Journal July 2020

ABSTRACT: Equilibrium moisture is a limiting factor in achieving high solids in the later stages of pressing or pressing low basis weight grades. We have developed a model that relates equilibrium moisture directly to the pore size distribution of fibers as measured by the solute exclusion technique. The model shows that chemical pulping and refining increase equilibrium moisture by increasing pore volume at given pore sizes in fibers, which leads to lower pressed solids and greater energy expenditure in the dryer section. Means to increase equilibrium moisture without compromising pulp strength are briefly discussed.

Journal articles
Magazine articles
Open Access
Viscoelastic web curl due to storage in wound rolls, TAPPI Journal July 2020

ABSTRACT: Winding is often the final operation in a roll-to-roll manufacturing process. Web materials, i.e., materials that are thin compared to their length, are wound into rolls because this form is the only practical means to store them. The resulting bending strains and associated stresses are large for thick webs and laminates. As many webs are viscoelastic on some time scale, bending stresses lead to creep and inhomogeneous changes in length. When the web material is unwound and cut into discrete samples, a residual curvature remains. This curvature, called curl, is the inability for the web to lie flat at no tension. Curl is an undesirable web defect that causes loss of productivity in a subsequent web process. This paper describes the development and implementation of modeling and experimental tools to explore and mitigate curl in homogenous webs. Two theoretical and numerical methods that allow the prediction of curl in a web are developed: a winding software based on bending recovery theory, and the implementation of dynamic simula-tions of winding. One experimental method is developed that directly measures the curl online by taking advantage of the anticlastic bending resulting from the curl. These methods are demonstrated for a low-density polyethylene web.

Journal articles
Magazine articles
Open Access
Improving paper wet strength via increased lignin content and hot-pressing temperature, TAPPI JOURNAL October 2020

ABSTRACT: It is known that the strength properties of wood-based paper materials can be enhanced via hot-pressing techniques. Today, there is a desire not only for a change from fossil-based packaging materials to new sustainable bio-based materials, but also for more effective and eco-friendly solutions for improving the dry and wet strength of paper and board. Against this background, hot pressing of paper made from high yield pulp (HYP), rich in lignin, becomes highly interesting. This study investigated the influence of pressing temperature and native lignin content on the properties of paper produced by means of hot pressing. Kraft pulps of varied lignin content (kappa numbers: 25, 50, 80) were produced at pilot scale from the same batch by varying the cooking time. We then studied the effect of lignin content by evaluating the physical properties of Rapid Köthen sheets after hot pressing in the temperature range of 20°C•200°C with a constant nip pressure of 7 MPa. The pilot-scale cooked pulps were compared with reference samples of mill-produced northern bleached soft-wood kraft (NBSK) pulp and mill-produced chemithermomechanical pulp (CTMP).Generally, the results demonstrated that lignin content had a significant effect on both dry and wet tensile index. All of the pilot cooked pulps with increased lignin content had a higher tensile index than the reference NBSK pulp. To obtain high tensile index, both dry and wet, the pressing temperature should be set high, preferably at least 200°C; that is, well above the glass transition temperature (Tg) for lignin. Moreover, the lignin content should prefera-bly also be high. All kraft pulps investigated in this study showed a linear relationship between wet strength and lignin content.

Journal articles
Open Access
AOX Content of Paper Manufactured with 'Chlorine Free' Pulps

AOX Content of Paper Manufactured with 'Chlorine Free' Pulps, 1995 Papermakers Conference Proceedings