International Conference on Nanotechnology for Renewable Materials

Understanding the colloidal stabilization effect of nanochitin suspended with carbon nanomaterials towards energy materials

<u>Tianyu Guo</u>, Jing Tian, Gabriel Banvillet, Yi Lu, Zhangmin Wan, Yimin Mao, Orlando Rojas

PRESENTED BY: **Tianyu Guo**Postdoc fellow

University of British Columbia

Carbon nanotube: Unique characteristics

Aspect ratio	Purity (%)		Bulk density (g/cm³)
250-4000	95-99.8	100-650	0.05-0.25

Dispersion matters!

CNT agglomerates

CNT dispersion in aqueous media is a critical step for processing and utilization

Possible solutions to the challenge of digestion:

Others: physical

adsorption of biocolloids

Chitin nanocrystals: Unique oriented structure in nature

The snapshot of Scyllarus

SEM image of herringbone pattern

Highly oriented chitin nanofibrils

Cholesteric Structures in Biological Architectures - Fracture Dissipation

Disperse CNT with nanochitin and adds to the mechanical features of final material

Strategy (

1. Study disperse behavior

Optimization of binary system disperse condition by tuning:

- Nanochitin surface modification
- Protonation effects

2. Fabricate material

Production of nanochitin/CNT composites using stable dispersion and explore its potential applications

Nanochitin is easily produced

Nanochitin can be isolated with different sizes and degrees of deacetylation

Fiber's size

- Degree of Deacetylation (DDA): 4%, 25%, 33% (commercial chitosan, 85%)
- Dimension: length: 50~2600 nm; width: 2~80 nm

DDA	Length (nm)	Width (nm)	
4 %	2500±100	80±5	
25%	270±32	11±0.8	
33%	169±20	5±0.7	
85%	50±12	2±0.2	

Effective dispersion of CNTs in aqueous nanochitin suspension

Bi@Mat

- Apply ultrasonic energy by sonicator
- Surface treatment with nano-chitin as a surfactant

UV-VIS to study CNT dispersion (dispersion limit)

- Ultraviolet visible near infrared spectroscopy (UV-Vis-NIR)
- The disperse limit can be calculated by the UV result with the Beer-Lambert Law

Supernatant of suspension after centrifugation

Low to high dispersion limit

Maximum disperse limit at intermediate DDA A lower pH enables better SWCNT dispersion

Nanochitin (DDA= 25%) suspension at different pH

Nanochitin (DDA= 25%) suspension with added CNT at different pH

Microscopy/spectroscopy cannot establish the relationship between the state of CNT dispersion and distribution in a matrix (nano-chitin)

Small angle X-ray scattering

Molecular simulation

Small Angle X-ray Scattering

The aggregation leads to bad scattering sampling.

Small Angle X-ray Scattering

Rectangular parallelepiped (random orientation)

$$I(q) = rac{ ext{scale}}{V} (\Delta
ho \cdot V)^2 \left\langle P(q, lpha, eta)
ight
angle + ext{background}$$

	рН3		рН5	
	DDA33	DDA33+CNT	DDA33	DDA33+CNT
Rg (Å)	79	194	75	244

CNT addition: the radius of gyration (Rg) of particle increased due to the absorption between CNT and ChNF.

Simulation structure of Nanochitin dispersing CNT

Method: Annealing from 298.15 K to 333.15 K, simulating at 333.15 K for 2ns, cooling from 333.15K to 298.15K

Simulation - dispersion energy

 ΔE (is ersio e er)= ΔE (is erse)- ΔE (b es) (Two-box method)

CNTs in vacuum environment: 175 mJ/m²; CNTs in chitin: 20 mJ/m²

Comparison of experimental and simulation results

Disperse CNT with nanochitin and adds to the mechanical features of final material

Strategy (

1. Study disperse behavior

Optimization of binary system disperse condition by tuning:

- Nanochitin surface modification
- Protonation effects

2. Fabricate material

Production of nanochitin/CNT composites using stable dispersion and explore its potential applications

Assembly of CNT and nano-chitin fibers

The CNT is well embedded into fibrous chitin network.

Optimum DDA (33%) for dispersion gives best mechanical strength

50/50 w/w composite films with different DDA

SEM of stretched film shows ductility

Recyclable/reusable

Utilization of thin film for solar evaporation

Photothermal conversion on ChNF/CNT nanopaper surface

Hierarchical photothermal evaporator

- An attractive technology for water purification and energy harvest;
- Advantage of ChNF/CNT film: water resistant, sustainable, strong, durable

Better dispersion leads to higher energy absorption

Evaluation of the solar evaporation

The thin films can be utilized for photothermal evaporation, water steam harvest and sea water desaltization process

Better dispersion leads to higher energy absorption

- The water evaporation depends on SWCNTs/ChNF assembly in the thin films;
- SWCNTs/nano-chitin film enhances the light absorption (incident light trapping and reflection reduction)

Summary

- UV-Vis-NIR can be used to assess the degree of CNT dispersion in aqueous nanochitin suspensions;
- To investigate the dispersion state of CNTs in nano-chitin matrix, SAXS and MS is applied which provide valuable information on how actual CNT dispersion is affected by chitin configuration (DDA and pH);
- Well dispersed composite thin film is mechanically stable in humidity environment, which is proposed to be used for solar evaporator.

Nano-chitin

CNT

Acknowledgements

Contact: tianyu.guo@ubc.ca

Postdoc fellow
University of British Columbia

Supervisor:

Prof. Orlando J. Rojas

Collaborators:

Prof. Yimin Mao Dr. Gabriel Banvillet, Dr. Yi Lu Jing Tian, Zhangmin Wan

